COURSE 15: CLEANING DATA IN PYTHON

Lawal’s note

2024-10-03

Table of contents

CHAPTER 1: DATA TYPE CONSTRAINTS . .. .. ... ... .. ... ....
Chapter 1.1: Data type constraints . . . . . . . . . . . ... ... ... . ... ...,
Course outline . . . . . . . . . . e
Why do we need to clean data? . . . . . . . . . .. ...
Data type constraints . . . . . . . . Lo L L
Strings to integers . . . . . . ...
The assert statement . . . . . . . . . ...
Numeric or categorical? . . . . . . . . . e
Exercise . . . . . o e
Numeric data or .. 7 . . . . . . .. e e
Instructions . . . . . . . L
Exercise 1.1 . . . . . . . e e e
Summing strings and concatenating numbers . . . . ... ..o
Instructions . . . . . . . .
Chapter 1.2: Data range constraints . . . . . . . . . . . . . . . v
Motivation . . . . . . . . . e e e
How to deal with out of range data? . . . . . . . . ... ... ... ... ......
Movie example . . . . . .. e e e
Date range example . . . . . . ..o
Exercise 1.2.1 . . . . . L L e e
Tire size constraints . . . . . . . . . . . e e e e
Instructions . . . . . . . L 9
Exercise 1.2.2 . . . . . e e e e e 10
Back to the future . . . . . . . . .. 10
Instructions . . . . . . . . L 10
Chapter 1.3: Uniqueness constraints . . . . . . . . . . . . . ... . ... ... ..., 10
What are duplicate values? . . . . . . . . . . . ... 10
Why do they happen? . . . . . . . .. 10
How to find duplicate values? . . . . . . . . .. ... .. ... ... ... ... 11
How to treat duplicate values? . . . . . . . . . .. . .. ... ... ... ..., 11

O© © © 00 0000 I~~~ O oy & Ot ot ot Ot ot Ot



Exercise 1.3.1 . . . . . . . e 12

Finding duplicates . . . . . . . . ..o 12
Instructions . . . . . . . . 12
Exercise 1.3.2 . . . . . . e e 12
CHAPTER 2: TEXT AND CATEGORICAL DATA PROBLEMS . ... ... ... .. 16
Chapter 2.1: Membership constraints . . . . . . . . . .. ... ... .. ... ..., 16
In this chapter . . . . . . . . . . 16
Categories and membership constraints . . . . . . ... ... ... ... ... 17
Why could we have these problems? . . . . . . . . ... ... 0. 17
How do we treat these problems? . . . . . . . . ... ... ... ... ........ 17
Anoteonjoins . . . . . .. . L 17
A left anti join on blood types. . . . . . . ..o 17
An inner join on blood types . . . . . . ... 18
Finding inconsistent categories™* . . . . . . . .. ... L 18
Dropping inconsistent categories . . . . . . . . ... Lo 18
Exercise 2.1 . . . . . Lo 18
Finding consistency . . . . . . . . .. oL 18
Instructions . . . . . . .. 18
Chapter 2.2: Categorical variables . . . . . . . . .. . ... ... .. ... 19
What type of errors could we have? . . . . . . . ... L Lo 19
Value consistency . . . . . . . . .. L 19
Collapsing data into categories . . . . . . . . . . .. ... 19
Exercise 2.2.1 . . . . . L e e e 20
Inconsistent categories . . . . . . . . ... 20
Instructions . . . . . . . . 20
Exercise 2.2.2 . . . .. L e e e e 20
Remapping categories . . . . . . . . L L L 20
Instructions . . . . . . . . . 21
Chapter 2.3: Cleaning text data . . . . . . . . . .. .. ... . ... 21
What is text data? . . . . . . .. 21
Example . . . . .. e 21
Fixing the phone number column . . . . . . . . . ... oL Lo oo 22
But what about more complicated examples? . . . . . . ... ... ... ...... 22
Regular expressions in action . . . . . . . ... ... L oo 22
Exercise 2.3.1 . . . . . . e e 22
Removing titles and taking names . . . . . .. . ... L L 0oL 22
Instructions . . . . . . . . . 23
Exercise 2.3.2 . . . . . oL 23
Keeping it descriptive . . . . . . .. Lo 23
Instructions . . . . . . . L 23
CHAPTER 3: ADVANCED DATA PROBLEMS . . . .. .. ... ... ... ...... 27
Chapter 3.1: Uniformity . . . . . . . . .. . 27
In this chapter . . . . . . . . . 28
Data range constraints . . . . . . ... 28
Uniformity . . . . . . . e 28



Anexample . . . . .. 28

Insert title here... . . . . . . . . . 28
Treating temperature data . . . . . . . . . . .. L0 28
Treating date data . . . . . . .. .. L 29
Datetime formatting . . . . . . . . ..o 29
Treating date data . . . . . . .. .. 29
Treating ambiguous date data . . . . . . . . .. ... oL 29
Exercise 3.1.1 . . . . . . L e e e 30
Uniform currencies . . . . . . . . ..o 30
Instructions . . . . . . . . L e 30
Exercise 3.1.2 . . . . . . L 30
Uniform dates . . . . . . . . . . e e 30
Instructions . . . . . . . . . e 30
Chapter 3.2: Cross field validation . . . . . . . ... ... ... .. ... ..., 31
Motivation . . . . . . . . . e e e e e e 31
Cross field validation . . . . . . . .. ... L 31
What to do when we catch inconsistencies? . . . . . .. ... ... ... 31
Exercise 3.2 . . . . Lo 32
How’s our data integrity? . . . . . . . . . . . .. 32
Instructions . . . . . . .o 32
Chapter 3.3: Completeness . . . . . . . . . . . . . e 32
What is missing data? . . . . . . . . .. 32
Airquality example . . . . . ..o 32
MisSIngno . . . . . . . . 33
Airquality example . . . . . . .. 33
Insert title here... . . . . . . . . . 33
Missingness types . . . . . . ..o e 33
How to deal with missing data? . . . . . .. . ... ... ... ... ... ... 34
Dealing with missing data . . . . . . . . .. .. . Lo 34
Dropping missing values . . . . . . . . ... L 34
Replacing with statistical measures . . . . . . . .. ... oo 34
Exercise 3.3.1 . . . . . L e e 34
Missing investors . . . . . . . .. L L 34
Instructions . . . . . . . .. 35
Exercise 3.3.2 . . . .. 35
Follow the money . . . . . . . . . . . 35
Instructions . . . . . . . . . 35

There are only 8 and 92 rows affected by inconsistent inv_amount and age values,
respectively. In this case, it’s best to investigate the underlying data sources before

deciding on a course of action! 40
CHAPTER 4: RECORD LINKAGE . . . . . .. ... . .. 40
Chapter 4.1: Comparing strings . . . . . . . . . . .« o 40
Minimum edit distance algorithms . . . . . . . .. ... ... .. .. ... ... 41
Simple string comparison . . . . . . ... L 41



Partial strings and different orderings . . . . . ... ... Lo oo 41

Comparison with arrays . . . . . . . . ... L 41
Collapsing categories with string similarity . . . . . . . . .. . ... ... ... ... 42
Collapsing categories with string matching . . . . . . ... ... ... ... ... .. 42
Collapsing all of the state . . . . . . . . . . .. ... 42
Record linkage . . . . . . . . .. 42
Exercise 4.1.1 . . . . . oL 42
The cutoff point . . . . . . . 42
Instructions . . . . . . L. 43
Remapping categories IT . . . . . . . . . . .. L 43
Instructions . . . . . . .. L 43
Chapter 4.2: Generating pairs . . . . . . . . . . . .. 43
Motivation . . . . . . . e e e 44
When joins won’t work . . . . . ... oL 44
Record linkage . . . . . . . . .. 44
Our DataFrames . . . . . . . . . . 44
Generating pairs . . . . . . . L 44
Blocking . . . . . . .. e 44
Generating pairs . . . . . . . Lo 45
Comparing the DataFrames . . . . . . . .. ... ... . oL 45
Finding matching pairs. . . . . . . . ... 45
Finding the only pairs we want . . . . . . . .. ... L L L Lo 45
Exercise 4.2.1 . . . . L o 46
Pairs of restaurants . . . . . ... L. L 46
Instructions . . . . . . . . 46
Exercise 4.2.2 . . . . . e e 46
Similar restaurants . . . . . ... L e 46
Instructions . . . . . . . L L 46
Chapter 4.3: Linking DataFrames. . . . . . . . . .. .. ... ... ... 47
Record linkage . . . . . . . . .. 47
Our DataFrames . . . . . . . .. .. e 47
What we’ve already done . . . . . . . . ... 47
What we’'re doing now . . . . . ... oL oL 47
Our potential matches . . . . . . . . . .. L 47
Probable matches . . . . . . . ... 48
Get the indices . . . . . . . . L e 48
Exercise 4.3 . . . . . L e 48
Linking them together! . . . . . . . . . . ... ... 48
Instructions . . . . . . . L 49
EXPLORE DATASETS . . . . . . 53



CHAPTER 1: DATA TYPE CONSTRAINTS
Chapter 1.1: Data type constraints

Hi and welcome! My name is Adel, and I'll be your host as we learn how to clean data in Python.

Course outline

In this course, we’re going to understand how to diagnose different problems in our data and how
they can can come up during our workflow. We will also understand the side effects of not treating
our data correctly and various ways to address different types of dirty data. In this chapter, we're
going to discuss the most common data problems you may encounter and how to address them.
So let’s get started!

Why do we need to clean data?

To understand why we need to clean data, let’s remind ourselves of the data science workflow. In
a typical data science workflow, we usually access our raw data, explore and process it, develop
insights using visualizations or predictive models, and finally report these insights with dashboards
or reports. Dirty data can appear because of duplicate values, mis-spellings, data type parsing
errors and legacy systems. Without making sure that data is properly cleaned in the exploration
and processing phase, we will surely compromise the insights and reports subsequently generated.
As the old adage says, garbage in garbage out.

Data type constraints

When working with data, there are various types that we may encounter along the way. We could
be working with text data, integers, decimals, dates, zip codes, and others. Luckily, Python has
specific data type objects for various data types that you’re probably familiar with by now. This
makes it much easier to manipulate these various data types in Python. As such, before preparing
to analyze and extract insights from our data, we need to make sure our variables have the correct
data types, other wise we risk compromising our analysis.

Strings to integers

Let’s take a look at the following example. Here’s the head of a DataFrame containing revenue
generated and quantity of items sold for a sales order. We want to calculate the total revenue
generated by all sales orders. As you can see, the Revenue column has the dollar sign on the
right hand side. A close inspection of the DataFrame column’s data types using the .dtypes
attribute returns object for the Revenue column, which is what pandas uses to store strings. We
can also check the data types as well as the number of missing values per column in a DataFrame,
by using the .info() method. Since the Revenue column is a string, summing across all sales



orders returns one large concatenated string containing each row’s string. To fix this, we need to
first remove the $ sign from the string so that pandas is able to convert the strings into numbers
without error. We do this with the .str.strip() method, while specifying the string we want to
strip as an argument, which is in this case the dollar sign. Since our dollar values do not contain
decimals, we then convert the Revenue column to an integer by using the .astype() method,
specifying the desired data type as argument. Had our revenue values been decimal, we would
have converted the Revenue column to float. We can make sure that the Revenue column is now
an integer by using the assert statement, which takes in a condition as input, as returns nothing
if that condition is met, and an error if it is not.

The assert statement

For example, here we are testing the equality that 1+1 equals 2. Since it is the case, the assert
statement returns nothing. However, when testing the equality 1+1 equals 3, we receive an
assertionerror. You can test almost anything you can imagine of by using assert, and we’ll see
more ways to utilize it as we go along the course.

Numeric or categorical?

A common type of data seems numeric but actually represents categories with a finite set of
possible categories. This is called categorical data. We will look more closely at categorical data
in Chapter 2, but let’s take a look at this example. Here we have a marriage status column, which
is represented by 0 for never married, 1 for married, 2 for separated, and 3 for divorced. However
it will be imported of type integer, which could lead to misleading results when trying to extract
some statistical summaries. We can solve this by using the same .astype() method seen earlier,
but this time specifying the category data type. When applying the describe again, we see that
the summary statistics are much more aligned with that of a categorical variable, discussing the
number of observations, number of unique values, most frequent category instead of mean and
standard deviation.

Exercise
Numeric data or ... ?

In this exercise, and throughout this chapter, you’ll be working with bicycle ride sharing data
in San Francisco called ride_sharing. It contains information on the start and end stations, the
trip duration, and some user information for a bike sharing service.

The user_type column contains information on whether a user is taking a free ride and takes on
the following values:

e 1 for free riders.
e 2 for pay per ride.
e 3 for monthly subscribers.



In this instance, you will print the information of ride_sharing using .info() and see a firsthand
example of how an incorrect data type can flaw your analysis of the dataset.

Instructions

e Print the information of ride_sharing.

e Use .describe() to print the summary statistics of the user_type column from
ride_sharing.

o Convert user_type into categorical by assigning it the 'category' data type and store it
in the user_type_cat column.

o Make sure you converted user_type_cat correctly by using an assert statement.

Exercise 1.1
Summing strings and concatenating numbers

In the previous exercise, you were able to identify that category is the correct data type for
user_type and convert it in order to extract relevant statistical summaries that shed light on the
distribution of user_type.

Another common data type problem is importing what should be numerical values as strings, as
mathematical operations such as summing and multiplication lead to string concatenation, not
numerical outputs.

In this exercise, you’ll be converting the string column duration to the type int. Before that
however, you will need to make sure to strip "minutes" from the column in order to make sure
pandas reads it as numerical.

Instructions

e Usethe .strip() method to strip duration of "minutes" and store it in the duration_trim
column.

e Convert duration_trim to int and store it in the duration_time column.

o Write an assert statement that checks if duration_time’s data type is now an int. Print
the average ride duration.

Chapter 1.2: Data range constraints

Hi and welcome back! In this lesson, we're going to discuss data that should fall within a range.



Motivation

Let’s first start off with some motivation. Imagine we have a dataset of movies with their respective
average rating from a streaming service. The rating can be any integer between 1 and 5. After
creating a histogram with maptlotlib, we see that there are a few movies with an average rating
of 6, which is well above the allowable range. This is most likely an error in data collection or
parsing, where a variable is well beyond its range and treating it is essential to have accurate
analysis. Here’s another example, where we see subscription dates in the future for a service.
Inherently this doesn’t make any sense, as we cannot sign up for a service in the future, but these
errors exist either due to technical or human error. We use the datetime package’s .date.today()
function to get today’s date, and we filter the dataset by any subscription date higher than today’s
date. We need to pay attention to the range of our data.

How to deal with out of range data?

There’s a variety of options to deal with out of range data. The simplest option is to drop the data.
However, depending on the size of your out of range data, you could be losing out on essential
information. As a rule of thumb, only drop data when a small proportion of your dataset is affected
by out of range values, however you really need to understand your dataset before deciding to drop
values. Another option would be setting custom minimums or maximums to your columns. We
could also set the data to missing, and impute it, but we’ll take a look at how to deal with missing
data in Chapter 3. We could also, dependent on the business assumptions behind our data, assign
a custom value for any values of our data that go beyond a certain range.

Movie example

Let’s take a look at the movies example mentioned earlier. We first isolate the movies with ratings
higher than 5. Now if these values are affect a small set of our data, we can drop them. We can
drop them in two ways - we can either create a new filtered movies DataFrame where we only keep
values of avg_ rating lower or equal than to 5. Or drop the values by using the drop method. The
drop method takes in as argument the row indices of movies for which the avg rating is higher
than 5. We set the inplace argument to True so that values are dropped in place and we don’t
have to create a new column. We can make sure this is set in place using an assert statement that
checks if the maximum of avg_rating is lower or equal than to 5. Depending on the assumptions
behind our data, we can also change the out of range values to a hard limit. For example, here
we’re setting any value of the avg rating column in to 5 if it goes beyond it. We can do this using
the dot-loc method, which returns all cells that fit a custom row and column index. It takes as
first argument the row index, or here all instances of avg_ rating above 5 and as second argument
the column index, which is here the avg rating column. Again, we can make sure that this change
was done using an assert statement.



Date range example

Let’s take another look at the date range example mentioned earlier, where we had subscriptions
happening in the future. We first look at the data types of the column with the dot-dtypes
attribute. We can confirm that the subscription_date column is an object and not a date or
datetime object. To compare a pandas object to a date, the first step is to convert it to another
date. We do so by first converting it into a pandas datetime object with the to_ datetime function
from pandas, which takes in as an argument the column we want to convert. We then need to
convert the datetime object into a date. This conversion is done by appending dt-dot-date to the
code. Could we have converted from an object directly to a date, without the pandas datetime
conversion in the middle? Yes! But we’d have had to provide information about the date’s format
as a string, so it’s just as easy to do it this way. Now that the column is a date, we can treat it in a
variety of ways. We first create a today_ date variable using the datetime function date-dot-today,
which allows us to store today’s date. We can then either drop the rows with exceeding dates
similar to how we did in the average rating example, or replace exceeding values with today’s date.
In both cases we can use the assert statement to verify our treatment went well, by comparing
the maximum value in the subscription_ date column. However, make sure to chain it with the
dot-date method to return a date instead of a timestamp.

Exercise 1.2.1
Tire size constraints

In this lesson, you’re going to build on top of the work you’ve been doing with the ride_sharing
DataFrame. You’ll be working with the tire_ sizes column which contains data on each bike’s tire
size.

Bicycle tire sizes could be either 26 , 27 or 29 and are here correctly stored as a categorical value.
In an effort to cut maintenance costs, the ride sharing provider decided to set the maximum tire
size to be 27 .

In this exercise, you will make sure the tire_sizes column has the correct range by first converting
it to an integer, then setting and testing the new upper limit of 27 for tire sizes.

Instructions

Convert the tire_sizes column from category to 'int'.

e Use .loc[] to set all values of tire_sizes above 27 to 27.
e Reconvert back tire_sizes to 'category' from int.

e Print the description of the tire_sizes.



Exercise 1.2.2
Back to the future

A new update to the data pipeline feeding into the ride_sharing DataFrame has been updated to
register each ride’s date. This information is stored in the ride_date column of the type object,
which represents strings in pandas.

A bug was discovered which was relaying rides taken today as taken next year. To fix this, you
will find all instances of the ride_date column that occur anytime in the future, and set the
maximum possible value of this column to today’s date. Before doing so, you would need to
convert ride_date to a datetime object.

Instructions

e Convert ride_date to a datetime object using to_datetime (), then convert the datetime
object into a date and store it in ride_dt column.

e Create the variable today, which stores today’s date by using the dt .date.today () function.

o For all instances of ride_dt in the future, set them to today’s date.

e Print the maximum date in the ride_dt column.

Chapter 1.3: Uniqueness constraints

Hi and welcome to the final lesson of this chapter. Let’s discuss another common data cleaning
problem, duplicate values.

What are duplicate values?

Duplicate values can be diagnosed when we have the same exact information repeated across
multiple rows, for a some or all columns in our DataFrame. In this example DataFrame containing
the names, address, height, and weight of individuals, the rows presented have identical values
across all columns. In this one, there are duplicate values for all columns except the height column
— which leads us to think it’s more likely a data entry error than an actual other person.

Why do they happen?

Apart from data entry and human errors alluded to in the previous slide, duplicate data can
also arise because of bugs and design errors whether in business processes or data pipelines.
However they oftenmost arise from the necessary act of joining and consolidating data from various
resources, which could retain duplicate values.
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How to find duplicate values?

Let’s first see how to find duplicate values. In this example, we’re working with a bigger version of
the the height and weight data seen earlier in the video. We can find duplicates in a DataFrame by
using the .duplicated () method. It returns a Series of boolean values that are True for duplicate
values, and False for non-duplicated values. We can see exactly which rows are affected by using
brackets as such. However, using .duplicated() without playing around with the arguments of
the method can lead to misleading results, as all the columns are required to have duplicate values
by default, with all duplicate values being marked as True except for the first occurrence. This
limits our ability to properly diagnose what type of duplication we have, and how to effectively
treat it. To properly calibrate how we go about finding duplicates, we will use 2 arguments from
the .duplicated() method. The subset argument lets us set a list of column names to check for
duplication. For example, it allows us to find duplicates for the first and last name columns only.
The keep argument lets us keep the first occurrence of a duplicate value by setting it to the string
first, the last occurrence of a duplicate value by setting it the string last, or keep all occurrences
of duplicate values by setting it to False. In this example, we’re checking for duplicates across the
first name, last name, and address variables, and we’re choosing to keep all duplicates. We see
the following results — to get a better bird’s eye view of the duplicates, We sort the duplicate rows
using the .sort_ values method, choosing first_ name to sort by. We find that there are four sets of
duplicated rows, the first 2 being complete duplicates of each other across all columns, highlighted
here in red. The other 2 being incomplete duplicates of each other highlighted here in blue with
discrepancies across height and weight respectively.

How to treat duplicate values?

The complete duplicates can be treated easily. All that is required is to keep one of them only
and discard the others. This can be done with the .drop_duplicates() method, which also takes
in the same subset and keep arguments as in the .duplicated() method, as well as the inplace
argument which drops the duplicated values directly inside the height_weight DataFrame. Here
we are dropping complete duplicates only, so it’s not necessary nor advisable to set a subset,
and since the keep argument takes in first as default, we can keep it as such. Note that we
can also set it as last, but not as False as it would keep all duplicates. This leaves us with the
other 2 sets of duplicates discussed earlier, which are the same for first_name, last_name and
address, but contain discrepancies in height and weight. Apart from dropping rows with really
small discrepancies, we can use a statistical measure to combine each set of duplicated values.
For example, we can combine these two rows into one by computing the average mean between
them, or the maximum, or other statistical measures, this is highly dependent on a common sense
understanding of our data, and what type of data we have.

We can do this easily using the groupby method, which when chained with the agg method, lets
you group by a set of common columns and return statistical values for specific columns when
the aggregation is being performed. For example here, we created a dictionary called summaries,
which instructs groupby to return the maximum of duplicated rows for the height column, and the
mean duplicated rows for the weight column. We then group height_ weight by the column names
defined earlier, and chained it with the agg method, which takes in the summaries dictionary
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we created. We chain this entire line with the .reset_index() method, so that we can have
numbered indices in the final output. We can verify that there are no more duplicate values by
running the duplicated method again, and use brackets to output duplicate rows.

Exercise 1.3.1
Finding duplicates

A new update to the data pipeline feeding into ride_sharing has added the bike_id column,
which represents a unique identifier for each ride.

The update however coincided with radically shorter average ride duration times and irregular
user birth dates set in the future. Most importantly, the number of rides taken has increased by
20% overnight, leading you to think there might be both complete and incomplete duplicates in
the ride_sharing DataFrame.

In this exercise, you will confirm this suspicion by finding those duplicates. A sample of
ride_sharing is in your environment, as well as all the packages you’ve been working with thus
far.

Instructions

e Find duplicated rows of ride_id in the ride_sharing DataFrame while setting keep to
False.

e Subset ride_sharing on duplicates and sort by bike_id and assign the results to
duplicated_rides.

e Print the bike_id, duration and user_birth_year columns of duplicated_rides in that
order.

Exercise 1.3.2

Treating duplicates

In the last exercise, you were able to verify that the new update feeding into ride_sharing contains
a bug generating both complete and incomplete duplicated rows for some values of the bike_id
column, with occasional discrepant values for the user_birth_year and duration columns.

In this exercise, you will be treating those duplicated rows by first dropping complete duplicates,
and then merging the incomplete duplicate rows into one while keeping the average duration, and
the minimum user_birth_year for each set of incomplete duplicate rows.

Instructions

e Drop complete duplicates in ride_sharing and store the results in ride_dup.
e Create the statistics dictionary which holds minimum aggregation for user_birth_year
and mean aggregation for duration.

12



e Drop incomplete duplicates by grouping by bike_id and applying the aggregation in
statistics.
e Find duplicates again and run the assert statement to verify de-duplication.

# Import the course packages
import pandas as pd

import numpy as np

import datetime as dt

import matplotlib.pyplot as plt
import missingno as msno

import fuzzywuzzy

import recordlinkage

# Import the course dataset
ride_sharing = pd.read_csv('datasets/ride_sharing.mod.csv', index_col = 'Unnamed: 0')

# Print the information of ride_sharing
print(ride_sharing.info())

# Print summary statistics of user_type column
print(ride_sharing['user_type'].describe())

# Convert user_type from integer to category
ride_sharing['user_type_cat'] = ride_sharing['user_type'].astype('category')

# Write an assert statement confirming the change
assert ride_sharing['user_type_cat'].dtype == 'category'

# Print new summary statistics
print(ride_sharing['user_type_cat'].describe())

# Strip duration of minutes
ride_sharing['duration_trim']

ride_sharing['duration'].str.strip('minutes')

# Convert duration to integer
ride_sharing['duration_time']

ride_sharing['duration_trim'].astype('int')

# Write an assert statement making sure of conversion
assert ride_sharing['duration_time'].dtype == 'int'

# Print formed columns and calculate average ride duration
print(ride_sharing[['duration', 'duration_trim','duration_time']])

print(ride_sharing['duration_time'].mean())

# 11 minutes 4s really not bad for an average ride duration in a city like San-Francisco.
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# Convert tire_stizes to integer
ride_sharing['tire_sizes'] = ride_sharing['tire_sizes'].astype('int')

# Set all wvalues above 27 to 27
ride_sharing.loc[ride_sharing['tire_sizes'] > 27, 'tire_sizes'] = 27

# Reconvert tire_sizes back to categorical
ride_sharing['tire_sizes'] = ride_sharing['tire_sizes'].astype('category')

# Print tire size description
print(ride_sharing['tire_sizes'].describe())

# Convert ride_date to date
ride_sharing['ride_dt'] = pd.to_datetime(ride_sharing['ride_date']).dt.date

# Save today's date
today = dt.date.today()

# Set all in the future to today's date
ride_sharing.loc[ride_sharing['ride_dt'] > today, 'ride_dt'] = today

# Print mazimum of ride_dt column
print(ride_sharing['ride_dt'].max())

# Find duplicates
duplicates = ride_sharing.duplicated('bike_id', keep=False)

# Sort your duplicated rides
duplicated_rides = ride_sharing[duplicates].sort_values('bike_id')

# Print relevant columns of duplicated_rides
print(duplicated_rides[['bike_id', 'duration', 'user_birth_year']])

# Drop complete duplicates from ride_sharing
ride_dup = ride_sharing.drop_duplicates()

# Create statistics dictionary for aggregation function

statistics = {'user_birth_year': 'min', 'duration_time': 'mean'}

# Group by bike_id and compute new statistics
ride_unique = ride_dup.groupby(by = 'bike_id').agg(statistics).reset_index()

# Find duplicated values again
duplicates = ride_unique.duplicated(subset = 'bike_id', keep = False)

14



duplicated_rides = ride_unique[duplicates == True]

assert duplicated_rides.shape[0] == 0

<class 'pandas.core.frame.DataFrame'>
Index: 25760 entries, 0 to 25759
Data columns (total 11 columns):

# Column Non-Null Count Dtype
0 duration 25760 non-null object
1 station_A_id 25760 non-null int64
2 station_A_name 25760 non-null object
3 station_B_id 25760 non-null int64
4 station_B_name 25760 non-null object
5 bike_id 25760 non-null int64
6 user_type 25760 non-null 1int64
7 user_birth_year 25760 non-null int64
8 user_gender 25760 non-null object
9 tire_sizes 25760 non-null int64
10 ride_date 25760 non-null object

dtypes: int64(6), object(5)
memory usage: 2.4+ MB

None

count 25760.000000
mean 2.008385
std 0.704541
min 1.000000
257 2.000000
50% 2.000000
75% 3.000000
max 3.000000
Name: user_type, dtype: float64
count 25760
unique 3

top 2

freq 12972

Name: user_type_cat, dtype: int64
duration duration_trim duration_time

0 12 minutes 12 12
1 24 minutes 24 24
2 8 minutes 8 8
3 4 minutes 4 4
4 11 minutes 11 11
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25755 11 minutes 11 11

25756 10 minutes 10 10
25757 14 minutes 14 14
25758 14 minutes 14 14
25759 29 minutes 29 29

[25760 rows x 3 columns]
11.389052795031056

count 25760
unique 2
top 27
freq 17173
Name: tire_sizes, dtype: int64
2024-10-04

bike_id duration wuser_birth_year
3638 11 12 minutes 1988
6088 11 5 minutes 1985
10857 11 4 minutes 1987
10045 27 13 minutes 1989
16104 27 10 minutes 1970
8812 6638 10 minutes 1986
6815 6638 5 minutes 1995
8456 6638 7 minutes 1983
8300 6638 6 minutes 1962
8380 6638 8 minutes 1984

[25717 rows x 3 columns]

CHAPTER 2: TEXT AND CATEGORICAL DATA PROBLEMS
Chapter 2.1: Membership constraints

Fantastic work on Chapter 1! You're now equipped to treat more complex, and specific data
cleaning problems.

In this chapter

In this chapter, we’re going to take a look at common data problems with text and categorical
data, so let’s get started.
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Categories and membership constraints

In this lesson, we’ll focus on categorical variables. As discussed early in chapter 1, categorical data
represent variables that represent predefined finite set of categories. Examples of this range from
marriage status, household income categories, loan status and others. To run machine learning
models on categorical data, they are often coded as numbers. Since categorical data represent a
predefined set of categories, they can’t have values that go beyond these predefined categories.

Why could we have these problems?

We can have inconsistencies in our categorical data for a variety of reasons. This could be due to
data entry issues with free text vs dropdown fields, data parsing errors and other types of errors.

How do we treat these problems?

There’s a variety of ways we can treat these, with increasingly specific solutions for different types
of inconsistencies. Most simply, we can drop the rows with incorrect categories. We can attempt
remapping incorrect categories to correct ones, and more. We'll see a variety of ways of dealing
with this throughout the chapter and the course, but for now we’ll just focus on dropping data.
An example Let’s first look at an example. Here’s a DataFrame named study_ data containing
a list of first names, birth dates, and blood types. Additionally, a DataFrame named categories,
containing the correct possible categories for the blood type column has been created as well.
Notice the inconsistency here? There’s definitely no blood type named Z+. Luckily, the categories
DataFrame will help us systematically spot all rows with these inconsistencies. It’s always good
practice to keep a log of all possible values of your categorical data, as it will make dealing with
these types of inconsistencies way easier.

A note on joins

Now before moving on to dealing with these inconsistent values, let’s have a brief reminder on
joins. The two main types of joins we care about here are anti joins and inner joins. We join
DataFrames on common columns between them. Anti joins, take in two DataFrames A and B,
and return data from one DataFrame that is not contained in another. In this example, we are
performing a left anti join of A and B, and are returning the columns of DataFrames A and B for
values only found in A of the common column between them being joined on. Inner joins, return
only the data that is contained in both DataFrames. For example, an inner join of A and B, would
return columns from both DataFrames for values only found in A and B, of the common column
between them being joined on.

A left anti join on blood types

In our example, an left anti join essentially returns all the data in study data with inconsistent
blood types,
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An inner join on blood types

and an inner join returns all the rows containing consistent blood types signs.

Finding inconsistent categories**

Now let’s see how to do that in Python. We first get all inconsistent categories in the blood_ type
column of the study_ data DataFrame. We do that by creating a set out of the blood_ type column
which stores its unique values, and use the difference method which takes in as argument the
blood__type column from the categories DataFrame. This returns all the categories in blood_ type
that are not in categories. We then find the inconsistent rows by finding all the rows of the
blood__type columns that are equal to inconsistent categories by using the isin method, this returns
a series of boolean values that are True for inconsistent rows and False for consistent ones. We
then subset the study_ data DataFrame based on these boolean values, and voila we have our
inconsistent data.

Dropping inconsistent categories

To drop inconsistent rows and keep ones that are only consistent. We just use the tilde symbol
while subsetting which returns everything except inconsistent rows

Exercise 2.1
Finding consistency

In this exercise and throughout this chapter, you’ll be working with the airlines DataFrame
which contains survey responses on the San Francisco Airport from airline customers.

The DataFrame contains flight metadata such as the airline, the destination, waiting times as well
as answers to key questions regarding cleanliness, safety, and satisfaction. Another DataFrame
named categories was created, containing all correct possible values for the survey columns.

In this exercise, you will use both of these DataFrames to find survey answers with inconsistent
values, and drop them, effectively performing an outer and inner join on both these DataFrames
as seen in the video exercise.

Instructions

o Print the categories DataFrame and take a close look at all possible correct categories of
the survey columns.

e Print the unique values of the survey columns in airlines using the .unique () method.

e Create a set out of the cleanliness column in airlines using set() and find the incon-
sistent category by finding the difference in the cleanliness column of categories.
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e Find rows of airlines with a cleanliness value not in categories and print the output.
e Print the rows with the consistent categories of cleanliness only.

Chapter 2.2: Categorical variables

Awesome work on the last lesson. Now let’s discuss other types of problems that could affect
categorical variables.

What type of errors could we have?

In the last lesson, we saw how categorical data has a value membership constraint, where columns
need to have a predefined set of values. However, this is not the only set of problems we may
encounter. When cleaning categorical data, some of the problems we may encounter include value
inconsistency, the presence of too many categories that could be collapsed into one, and making
sure data is of the right type.

Value consistency

Let’s start with making sure our categorical data is consistent. A common categorical data problem
is having values that slightly differ because of capitalization. Not treating this could lead to
misleading results when we decide to analyze our data, for example, let’s assume we’re working with
a demographics dataset, and we have a marriage status column with inconsistent capitalization.
Here’s what counting the number of married people in the marriage status Series would look
like. Note that the .value_counts() methods works on Series only. For a DataFrame, we can
groupby the column and use the .count () method. To deal with this, we can either capitalize
or lowercase the marriage status column. This can be done with the str.upper () or .lower()
functions respectively. Another common problem with categorical values are leading or trailing
spaces. For example, imagine the same demographics DataFrame containing values with leading
spaces. Here’s what the counts of married vs unmarried people would look like. Note that there is
a married category with a trailing space on the right, which makes it hard to spot on the output,
as opposed to unmarried. To remove leading spaces, we can use the .str.strip() method which
when given no input, strips all leading and trailing white spaces.

Collapsing data into categories

Sometimes, we may want to create categories out of our data, such as creating household income
groups from income data. To create categories out of data, let’s use the example of creating
an income group column in the demographics DatakFrame. We can do this in 2 ways. The first
method utilizes the qcut function from pandas, which automatically divides our data based on its
distribution into the number of categories we set in the q argument, we created the category names
in the group_ names list and fed it to the labels argument, returning the following. Notice that
the first row actually misrepresents the actual income of the income group, as we didn’t instruct
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qgcut where our ranges actually lie. We can do this with the cut function instead, which lets us
define category cutoff ranges with the bins argument. It takes in a list of cutoff points for each
category, with the final one being infinity represented with np.inf (). From the output, we can
see this is much more correct. Sometimes, we may want to reduce the amount of categories we
have in our data. Let’s move on to mapping categories to fewer ones. For example, assume we
have a column containing the operating system of different devices, and contains these unique
values. Say we want to collapse these categories into 2, DesktopOS, and MobileOS. We can do
this using the replace method. It takes in a dictionary that maps each existing category to the
category name you desire. In this case, this is the mapping dictionary. A quick print of the unique
values of operating system shows the mapping has been complete.

Exercise 2.2.1
Inconsistent categories

In this exercise, you'll be revisiting the airlines DataFrame from the previous lesson.

As a reminder, the DataFrame contains flight metadata such as the airline, the destination, waiting
times as well as answers to key questions regarding cleanliness, safety, and satisfaction on the San
Francisco Airport.

In this exercise, you will examine two categorical columns from this DataFrame, dest_region
and dest_size respectively, assess how to address them and make sure that they are cleaned and
ready for analysis.

Instructions

e Print the unique values in dest_region and dest_size respectively.

e Change the capitalization of all values of dest_region to lowercase.

e Replace the 'eur' with 'europe' in dest_region using the .replace() method.

o Strip white spaces from the dest_size column using the .strip() method.

e Verify that the changes have been into effect by printing the unique values of the columns
using .unique().

Exercise 2.2.2
Remapping categories

To better understand survey respondents from airlines, you want to find out if there is a rela-
tionship between certain responses and the day of the week and wait time at the gate.

The airlines DataFrame contains the day and wait_min columns, which are categorical and
numerical respectively. The day column contains the exact day a flight took place, and wait_min
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contains the amount of minutes it took travelers to wait at the gate. To make your analysis easier,
you want to create two new categorical variables:

wait_type: 'short' for 0-60 min, 'medium' for 60-180 and long for 180+

day_week: 'weekday' if day is in the weekday, 'weekend' if day is in the weekend.

Instructions

o Create the ranges and labels for the wait_type column mentioned in the description.

o Create the wait_type column by from wait_min by using pd.cut(), while inputting
label_ranges and label_names in the correct arguments.

o Create the mapping dictionary mapping weekdays to 'weekday' and weekend days to
'weekend'.

o Create the day_week column by using .replace().

Chapter 2.3: Cleaning text data

Good job on the previous lesson. In the final lesson of this chapter, we’ll talk about text data and
regular expressions.

What is text data?

Text data is one of the most common types of data types. Examples of it range from names, phone
numbers, addresses, emails and more. Common text data problems include handling inconsisten-
cies, making sure text data is of a certain length, typos and others.

Example

Let’s take a look at the following example. Here’s a DataFrame named phones containing the
full name and phone numbers of individuals. Both are string columns. Notice the phone number
column. We can see that there are phone number values, that begin with 00 or 4. We also see
that there is one entry where the phone number is 4 digits, which is non-existent. Furthermore, we
can see that there are dashes across the phone number column. If we wanted to feed these phone
numbers into an automated call system, or create a report discussing the distribution of users by
area code, we couldn’t really do so without uniform phone numbers. Ideally, we’d want to the
phone number column as such. Where all phone numbers are aligned to begin with 00, where any
number below the 10 digit value is replaced with NaN to represent a missing value, and where all
dashes have been removed. Let’s see how that’s done!
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Fixing the phone number column

Let’s first begin by replacing the plus sign with 00, to do this, we use the dot str dot replace
method which takes in two values, the string being replaced, which is in this case the plus sign
and the string to replace it with which is in this case 00. We can see that the column has been
updated. We use the same exact technique to remove the dashes, by replacing the dash symbol
with an empty string. Now finally we’re going to replace all phone numbers below 10 digits to
NaN. We can do this by chaining the Phone number column with the dot str dot len method,
which returns the string length of each row in the column. We can then use the dot loc method,
to index rows where digits is below 10, and replace the value of Phone number with numpy’s nan
object, which is here imported as np. We can also write assert statements to test whether the
phone number column has a specific length,and whether it contains the symbols we removed. The
first assert statement tests that the minimum length of the strings in the phone number column,
found through str dot len, is bigger than or equal to 10. In the second assert statement, we use
the str dot contains method to test whether the phone number column contains a specific pattern.
It returns a series of booleans for that are True for matches and False for non-matches. We set
the pattern plus bar pipe minus, the bar pipe here is basically an or statement, so we’re trying
to find matches for either symbols. We chain it with the any method which returns True if any
element in the output of our dot-str-contains is True, and test whether the it returns False.

But what about more complicated examples?

But what about more complicated examples? How can we clean a phone number column that
looks like this for example? Where phone numbers can contain a range of symbols from plus
signs, dashes, parenthesis and maybe more. This is where regular expressions come in. Regular
expressions give us the ability to search for any pattern in text data, like only digits for example.
They are like control 4 find in your browser, but way more dynamic and robust.

Regular expressions in action

Let’s a look at this example. Here we are attempting to only extract digits from the phone number
column. To do this, we use the dot str dot replace method with the pattern we want to replace
with an empty string. Notice the pattern fed into the method. This is essentially us telling pandas
to replace anything that is not a digit with nothing. We won’t get into the specifics of regular
expressions, and how to construct them, but they are immensely useful for difficult string cleaning
tasks, so make sure to check out DataCamp’s course library on regular expressions.

Exercise 2.3.1
Removing titles and taking names

While collecting survey respondent metadata in the airlines DataFrame, the full name of re-
spondents was saved in the full_name column. However upon closer inspection, you found that
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a lot of the different names are prefixed by honorifics such as "Dr.", "Mr.", "Ms." and "Miss"

Your ultimate objective is to create two new columns named first_name and last_name, con-
taining the first and last names of respondents respectively. Before doing so however, you need to
remove honorifics.

Instructions

e Remove "Dr.", "Mr.", "Miss" and "Ms." from full_name by replacing them with an empty
string "" in that order.

e Run the assert statement using .str.contains() that tests whether full_name still con-
tains any of the honorifics.

Exercise 2.3.2
Keeping it descriptive

To further understand travelers’ experiences in the San Francisco Airport, the quality assurance
department sent out a qualitative questionnaire to all travelers who gave the airport the worst
score on all possible categories. The objective behind this questionnaire is to identify common
patterns in what travelers are saying about the airport.

Their response is stored in the survey_response column. Upon a closer look, you realized a few of
the answers gave the shortest possible character amount without much substance. In this exercise,
you will isolate the responses with a character count higher than 40 , and make sure your new
DataFrame contains responses with 40 characters or more using an assert statement.

Instructions

o Using the airlines DataFrame, store the length of each instance in the survey_response
column in resp_length by using .str.len().

e Isolate the rows of airlines with resp_length higher than 40.

e Assert that the smallest survey_response length in airlines_survey is now bigger than
40.

# Import the course packages
import pandas as pd

import numpy as np

import datetime as dt

import matplotlib.pyplot as plt
import missingno as msno

import fuzzywuzzy

import recordlinkage
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categories = {'cleanliness': ['Clean', 'Average', 'Somewhat clean', 'Somewhat dirty', 'Dirty'],
'safety': ['Neutral', 'Very safe', 'Somewhat safe', 'Very unsafe', 'Somewhat unsafe'
'satisfaction': ['Very satisfied', 'Neutral', 'Somewhat satisfied', 'Somewhat unsati

categories = pd.DataFrame(categories)

# Import the course dataset
airlines = pd.read_csv('datasets/airlines.mod.csv', index_col = 'Unnamed: 0')

# Print unique values of survey columns in airlines
print('Cleanliness: ', airlines['cleanliness'].unique(), "\n")
print('Safety: ', airlines['safety'].unique(), "\n")
print('Satisfaction: ', airlines['satisfaction'].unique(), "\n")

# Find the cleanliness category in airlines not in categories DataFrame
cat_clean = set(airlines['cleanliness']).difference(categories['cleanliness'])

# Find rows with that category
cat_clean_rows = airlines(['cleanliness'].isin(cat_clean)

# Print rows with inconsistent category
print(airlines([cat_clean_rows])

# Print rows with consistent categories only using Tilde symbol (~)
print(airlines[~cat_clean_rows])

# Print unique values of both columns
print(airlines['dest_region'] .unique())
print(airlines['dest_size'].unique())

n n

# Lower dest_region column and then replace with "europe"
airlines['dest_region'] = airlines['dest_region'].str.lower()
airlines['dest_region'] = airlines['dest_region'].replace({'eur': 'europe'})

eur

# Remove white spaces from “dest_size’
airlines['dest_size'] = airlines['dest_size'].str.strip()

# Verify changes have been effected
print(airlines['dest_region'] .unique())
print(airlines['dest_size'].unique())

# Create ranges for categories

label_ranges = [0, 60, 180, np.inf]
label_names = ['short', 'medium', 'long']
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# Create wait_type column
airlines['wait_type']l = pd.cut(airlines['wait_min'], bins = label_ranges,
labels = label_names)

# Create mappings and replace

mappings = {'Monday': 'weekday', 'Tuesday':'weekday', 'Wednesday': 'weekday',
'Thursday': 'weekday', 'Friday': 'weekday',
'Saturday': 'weekend', 'Sunday': 'weekend'}

airlines(['day_week'] = airlines['day'].replace(mappings)
# You just created two new categorical wvariables, that when combined with other columns, could pr

# Replace "Dr." with empty string ""
airlines['full_name'] = airlines['full_name'].str.replace("Dr.","")

nn

# Replace "Mr." with empty string
airlines['full name'] = airlines['full_name'].str.replace("Mr.","")

nn

# Replace "Miss" with empty string
airlines['full name'] = airlines['full_name'].str.replace("Miss","")

# Replace "Ms." with empty string ""
airlines['full_name'] = airlines['full_name'].str.replace("Ms.","")

# Assert that full_mame has mo honorifics
assert airlines['full name'].str.contains('Ms.|Mr.|Miss|Dr.').any() == False

# Store length of each row in survey_response column
resp_length = airlines['survey_response'].str.len()

# Find rows in airlines where resp_length > 40
airlines_survey = airlines[resp_length > 40]

# Assert minimum survey_response length is > 40
assert airlines_survey['survey_response'].str.len().min() > 40

# Print nmew survey_response column
print(airlines_survey['survey_response'])

# These types of feedbacks are essential to improving any service. Coupled with some wordcount an

Cleanliness: ['Clean' 'Average' 'Somewhat clean' 'Somewhat dirty' 'Dirty']

Safety: ['Neutral' 'Very safe' 'Somewhat safe' 'Very unsafe' 'Somewhat unsafe']
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Satisfaction: ['Very satisfied' 'Neutral' 'Somewhat satsified' 'Somewhat unsatisfied'

'Very unsatisfied']

Empty DataFrame

Columns: [id, day, airline, destination, dest_region, dest_size, boarding_area, dept_time, wait_m
Index: []
id day airline destination dest_region \
0 1351 Tuesday UNITED INTL KANSAT Asia
1 373 Friday ALASKA SAN JOSE DEL CABO Canada/Mexico
2 2820  Thursday DELTA LOS ANGELES West US
3 1157 Tuesday SOUTHWEST LOS ANGELES West US
4 2992 Wednesday AMERICAN MIAMI East US
2804 1475 Tuesday ALASKA NEW YORK-JFK East US
2805 2222  Thursday SOUTHWEST PHOENIX West US
2806 2684 Friday UNITED ORLANDO East US
2807 2549 Tuesday JETBLUE LONG BEACH West US
2808 2162  Saturday CHINA EASTERN QINGDAO Asia
dest_size boarding_area dept_time wait_min cleanliness \
0 Hub Gates 91-102 12/31/2018 115 Clean
1 Small Gates 50-59 12/31/2018 135 Clean
2 Hub  Gates 40-48 12/31/2018 70 Average
3 Hub  Gates 20-39 12/31/2018 190 Clean
4 Hub  Gates 50-59 12/31/2018 559 Somewhat clean
2804 Hub  Gates 50-59 12/31/2018 280 Somewhat clean
2805 Hub  Gates 20-39 12/31/2018 165 Clean
2806 Hub  Gates 70-90 12/31/2018 92 Clean
2807 Small Gates 1-12 12/31/2018 95 Clean
2808 Large Gates 1-12 12/31/2018 220 Clean
safety satisfaction  full_name \
0 Neutral Very satisfied Mr.Stones
1 Very safe Very satisfied Mr.Dan
2 Somewhat safe Neutral Ms.Bob
3 Very safe Somewhat satsified Dr.Mos
4 Very safe Somewhat satsified Miss Volks
2804 Neutral Somewhat satsified Ms.Bob
2805 Very safe Very satisfied Dr.Mos
2806 Very safe Very satisfied Miss Volks
2807 Somewhat safe Very satisfied Mr.Jones
2808 Very safe Somewhat satsified Mr.Bim
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survey_response

0 It was terrible
1 I did not like the flight
2 I hate this
3 Not a fan
4 Bad
2804 It was awful
2805 My fllight was really unpleasant
2806 I am not a fan
2807 I had a bad flight
2808 It was very bad

[2477 rows x 14 columns]
['Asia' 'Canada/Mexico' 'West US' 'Fast US' 'Midwest US' 'EAST US'
'Middle East' 'Europe' 'eur' 'Central/South America'
'Australia/New Zealand' 'middle east']
['"Hub' 'Small"' ' Hub' 'Medium' 'Large' 'Hub 't Small'
'Medium v Medium' 'Small v Large' 'Large "]
['asia' 'canada/mexico' 'west us' 'east us' 'midwest us' 'middle east'
'europe' 'central/south america' 'australia/new zealand']
['Hub' 'Small' 'Medium' 'Large']

17 The airport personnel failed to notify us abou...
18 The food at the airport was incredibly expensi...
19 One of the other travelers was extremely loud ...
20 I don’t recall completing the survey with the

21 The airport personnel continuously ignored my ...
2791 I was really unsatisfied with the wait times b...
2792 The flight was generally okay, but I didn’t pa...
2793 We were significantly slowed down by the secur...

2794 I felt very unsatisfied by how long the flight...
2795 There was a spill on the aisle next to the bat...
Name: survey_response, Length: 1056, dtype: object

CHAPTER 3: ADVANCED DATA PROBLEMS
Chapter 3.1: Uniformity

Stellar work on chapter 2! You're now an expert at handling categorical and text variables.
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In this chapter

In this chapter, we’re looking at more advanced data cleaning problems, such as uniformity, cross
field validation and dealing with missing data.

Data range constraints

In chapter 1, we saw how out of range values are a common problem when cleaning data, and that
when left untouched, can skew your analysis.

Uniformity

In this lesson, we're going to tackle a problem that could similarly skew our data, which is unit
uniformity. For example, we can have temperature data that has values in both Fahrenheit and
Celsius, weight data in Kilograms and in stones, dates in multiple formats, and so on. Verifying
unit uniformity is imperative to having accurate analysis.

An example

Here’s a dataset with average temperature data throughout the month of March in New York City.
The dataset was collected from different sources with temperature data in Celsius and Fahrenheit
merged together. We can see that unless a major climate event occurred, this value here is most
likely Fahrenheit, not Celsius. Let’s confirm the presence of these values visually. We can do so by
plotting a scatter plot of our data. We can do this using matplotlib.pyplot, which was imported
as plt. We use the plt dot scatter function, which takes in what to plot on the x axis, the y axis,
and which data source to use. We set the title, axis labels with the helper functions seen here,
show the plot with plt dot show,

Insert title here...

and voila. Notice these values here? They all must be fahrenheit.

Treating temperature data

A simple web search returns the formula for converting Fahrenheit to Celsius. To convert our
temperature data, we isolate all rows of temperature column where it is above 40 using the loc
method. We chose 40 because it’s a common sense maximum for Celsius temperatures in New
York City. We then convert these values to Celsius using the formula above, and reassign them
to their respective Fahrenheit values in temperatures. We can make sure that our conversion was

correct with an assert statement, by making sure the maximum value of temperature is less than
40.
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Treating date data

Here’s another common uniformity problem with date data. This is a DataFrame called birthdays
containing birth dates for a variety of individuals. It has been collected from a variety of sources
and merged into one. Notice the dates here? The one in blue has the month, day, year format,
whereas the one in orange has the month written out. The one in red is obviously an error, with
what looks like a day day year format. We’ll learn how to deal with that one as well.

Datetime formatting

We already discussed datetime objects. Without getting too much into detail, datetime accepts
different formats that help you format your dates as pleased. The pandas to datetime function
automatically accepts most date formats, but could raise errors when certain formats are unrec-
ognizable. You don’t have to memorize these formats, just know that they exist and are easily
searchable!

Treating date data

You can treat these date inconsistencies easily by converting your date column to datetime. We
can do this in pandas with the to_ datetime function. However this isn’t enough and will most
likely return an error, since we have dates in multiple formats, especially the weird day/day /format
which triggers an error with months. Instead we set the infer datetime_ format argument to True,
and set errors equal to coerce. This will infer the format and return missing value for dates that
couldn’t be identified and converted instead of a value error. This returns the birthday column
with aligned formats, with the initial ambiguous format of day day year, being set to NAT, which
represents missing values in Pandas for datetime objects. We can also convert the format of
a datetime column using the dt dot strftime method, which accepts a datetime format of your
choice. For example, here we convert the Birthday column to day month year, instead of year
month day.

Treating ambiguous date data

However a common problem is having ambiguous dates with vague formats. For example, is
this date value set in March or August? Unfortunately there’s no clear cut way to spot this
inconsistency or to treat it. Depending on the size of the dataset and suspected ambiguities, we can
either convert these dates to NAs and deal with them accordingly. If you have additional context
on the source of your data, you can probably infer the format. If the majority of subsequent or
previous data is of one format, you can probably infer the format as well. All in all, it is essential
to properly understand where your data comes from, before trying to treat it, as it will make
making these decisions much easier.
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Exercise 3.1.1
Uniform currencies

In this exercise and throughout this chapter, you will be working with a retail banking dataset
stored in the banking DataFrame. The dataset contains data on the amount of money stored
in accounts (acct_amount), their currency (acct_cur), amount invested (inv_amount), account
opening date (account_opened), and last transaction date (last_transaction) that were con-
solidated from American and European branches.

You are tasked with understanding the average account size and how investments vary by the
size of account, however in order to produce this analysis accurately, you first need to unify the
currency amount into dollars.

Instructions

e Find the rows of acct_cur in banking that are equal to 'euro' and store them in the
variable acct_eu.

e Find all the rows of acct_amount in banking that fit the acct_eu condition, and convert
them to USD by multiplying them with 1.1.

e Find all the rows of acct_cur in banking that fit the acct_eu condition, set them to
'dollar'.

Exercise 3.1.2
Uniform dates

After having unified the currencies of your different account amounts, you want to add a temporal
dimension to your analysis and see how customers have been investing their money given the size
of their account over each year. The account_opened column represents when customers opened
their accounts and is a good proxy for segmenting customer activity and investment over time.

However, since this data was consolidated from multiple sources, you need to make sure that all
dates are of the same format. You will do so by converting this column into a datetime object,
while making sure that the format is inferred and potentially incorrect formats are set to missing.

Instructions

e Print the header of account_opened from the banking DataFrame and take a look at the
different results.

o Convert the account_opened column to datetime, while making sure the date format is
inferred and that erroneous formats that raise error return a missing value.

o Extract the year from the amended account_opened column and assign it to the acct_year
column.

30



e Print the newly created acct_year column.

Chapter 3.2: Cross field validation

Hi and welcome to the second lesson of this chapter! In this lesson we’ll talk about cross field
validation for diagnosing dirty data.

Motivation

Let’s take a look at the following dataset. It contains flight statistics on the total number of
passengers in economy, business and first class as well as the total passengers for each flight.
We know that these columns have been collected and merged from different data sources, and a
common challenge when merging data from different sources is data integrity, or more broadly
making sure that our data is correct.

Cross field validation

This is where cross field validation comes in. Cross field validation is the use of multiple fields
in your dataset to sanity check the integrity of your data. For example in our flights dataset,
this could be summing economy, business and first class values and making sure they are equal
to the total passengers on the plane. This could be easily done in Pandas, by first subsetting on
the columns to sum, then using the sum method with the axis argument set to 1 to indicate row
wise summing. We then find instances where the total passengers column is equal to the sum of
the classes. And find and filter out instances of inconsistent passenger amounts by subsetting on
the equality we created with brackets and the tilde symbol. Here’s another example containing
user IDs, birthdays and age values for a set of users. We can for example make sure that the age
and birthday columns are correct by subtracting the number of years between today’s date and
each birthday. We can do this by first making sure the Birthday column is converted to datetime
with the pandas to datetime function. We then create an object storing today’s date using the
datetime package’s date dot today function. We then calculate the difference in years between
today’s date’s year, and the year of each birthday by using the dot dt dot year attribute of the
user’s Birthday column. We then find instances where the calculated ages are equal to the actual
age column in the users DataFrame. We then find and filter out the instances where we have
inconsistencies using subsetting with brackets and the tilde symbol on the equality we created.

What to do when we catch inconsistencies?

So what should be the course of action in case we spot inconsistencies with cross-field validation?
Just like other data cleaning problems, there is no one size fits all solution, as often the best solution
requires an in depth understanding of our dataset. We can decide to either drop inconsistent data,
set it to missing and impute it, or apply some rules due to domain knowledge. All these routes
and assumptions can be decided upon only when you have a good understanding of where your
dataset comes from and the different sources feeding into it.
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Exercise 3.2
How’s our data integrity?

New data has been merged into the banking DataFrame that contains details on how investments
in the inv_amount column are allocated across four different funds A, B, C and D.

Furthermore, the age and birth_ date of customers are now stored in the Age and birth_date
columns respectively.

You want to understand how customers of different age groups invest. However, you want to first
make sure the data you’re analyzing is correct. You will do so by cross field checking values of
inv_amount and Age against the amount invested in different funds and customers’ birthdays.

Instructions

1. Find the rows where the sum of all rows of the fund_columns in banking are equal to
the inv_amount column. Store the values of banking with consistent inv_amount in
consistent_inv, and those with inconsistent ones in inconsistent_inv.

2. Store today’s date into today, and manually calculate customers' ages and store them in
ages_manual. Find all rows of banking where the age column is equal to ages_manual and
then filter banking into consistent_ages and inconsistent_ages.

Chapter 3.3: Completeness

Hi and welcome to the last lesson of this chapter. In this lesson, we’re going to discuss completeness
and missing data.

What is missing data?

Missing data is one of the most common and most important data cleaning problems. Essentially,
missing data is when no data value is stored for a variable in an observation. Missing data is most
commonly represented as NA or NaN, but can take on arbitrary values like 0 or dot. Like a lot
of the problems that we’ve seen thus far in the course, it’s commonly due to technical or human
errors. Missing data can take many forms, so let’s take a look at an example.

Airquality example

Let’s take a look at the airquality dataset. It contains temperature and CO2 measurements for
different dates. We can see that the CO2 value in this row is represented as NaN We can find
rows with missing values by using the dot is na method, which returns True for missing values
and False for complete values across all our rows and columns. We can also chain the isna method
with the sum method, which returns a breakdown of missing values per column in our dataframe.
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We notice that the CO2 column is the only column with missing values - let’s find out why and
dig further into the nature of this missingness by first visualizing our missing values.

Missingno

The missingno package allows to create useful visualizations of our missing data. Digging into
its details is not part of the course, but you can also check out other courses on missing data in
DataCamp’s course library. We visualize the missingness of the airquality DataFrame with the
msno dot matrix function, and show it with pyplot’s show function from matplotlib, which returns
the following image. This matrix essentially shows how missing values are distributed across a
column. We see that missing CO2 values are randomly scattered throughout the column, but is
that really the case? Let’s dig deeper.

Airquality example

We first isolate the rows of airquality with missing CO2 values in one DataFrame, and complete
CO2 values in another. Then, let’s use the describe method on each of the created DataFrames.
We see that for all missing values of CO2, they occur at really low temperatures, with the mean
temperature at minus 39 degrees and a minimum and maximum of -49 and -30 respectively. Let’s
confirm this visually with the missngno package.

Insert title here...

We first sort the DataFrame by the temperature column. Then we input the sorted dataframe to
the matrix function from msno. This leaves us with this matrix. Notice how all missing values are
on the top? This is because values are sorted from smallest to largest by default. This essentially
confirms that CO2 measurements are lost for really low temperatures. Must be a sensor failure!

Missingness types

This leads us to missingness types. Without going too much into the details, there are a variety
of types of missing data. It could missing completely at random, missing at random, or missing
not at random. Missing completely at random data is when there missing data completely due
to randomness, and there is no relationship between missing data and remaining values, such
data entry errors. Despite a slightly deceiving name, Missing at random data is when there is a
relationship between missing data and other observed values, such as our CO2 data being missing
for low temperatures. When data is missing not at random, there is a systematic relationship
between the missing data and unobserved values. For example, when it’s really hot outside, the
thermometer might stop working, so we don’t have temperature measurements for days with high
temperatures. However, we have no way to tell this just from looking at the data since we can’t
actually see what the missing temperatures are.
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How to deal with missing data?

There’s a variety of ways of dealing with missing data, from dropping missing data, to imputing
them with statistical measures such as mean, median or mode, or imputing them with more
complicated algorithmic approaches or ones that require some machine learning. Each missingness
type requires a specific approach, and each type of approach has drawbacks and positives, so make
sure to dig deeper in DataCamp’s course library on dealing with missing data.

Dealing with missing data

In this lesson, we’ll just explore the simple approaches to dealing with missing data. Let’s grab
another look at the header of airquality.

Dropping missing values

We can drop missing values, by using the dot dropna method, alongside the subset argument
which lets us pick which column’s missing values to drop.

Replacing with statistical measures

We can also replace the missing values of CO2 with the mean value of CO2, by using the fillna
method, which is in this case 1.73. Fillna takes in a dictionary with columns as keys, and the
imputed value as values. We can even feed custom values into fillna pertaining to our missing data
if we have enough domain knowledge about our dataset.

Exercise 3.3.1
Missing investors
Dealing with missing data is one of the most common tasks in data science. There are a variety

of types of missingness, as well as a variety of types of solutions to missing data.

You just received a new version of the banking DataFrame containing data on the amount held
and invested for new and existing customers. However, there are rows with missing inv_amount
values.

You know for a fact that most customers below 25 do not have investment accounts yet, and
suspect it could be driving the missingness.
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Instructions

e Print the number of missing values by column in the banking DataFrame.

e Plot and show the missingness matrix of banking with the msno.matrix() function.

o Isolate the values of banking missing values of inv_amount into missing_investors and
with non-missing inv_amount values into investors.

e Sort the banking DataFrame by the age column and plot the missingness matrix of
banking_sorted.

Exercise 3.3.2
Follow the money

In this exercise, you’re working with another version of the banking DataFrame that contains
missing values for both the cust_id column and the acct_amount column.

You want to produce analysis on how many unique customers the bank has, the average amount
held by customers and more. You know that rows with missing cust_id don’t really help you,
and that on average acct_amount is usually 5 times the amount of inv_amount.

In this exercise, you will drop rows of banking with missing cust_ids, and impute missing values
of acct_amount with some domain knowledge.

Instructions

e Use .dropna() to drop missing values of the cust_id column in banking and store the
results in banking_fullid.

e Use inv_amount to compute the estimated account amounts for banking_fullid by setting
the amounts equal to inv_amount * 5, and assign the results to acct_imp.

e Impute the missing values of acct_amount in banking fullid with the newly created
acct_imp using .fillna().

# Import the course packages
import pandas as pd

import numpy as np

import datetime as dt

import matplotlib.pyplot as plt
import missingno as msno

import fuzzywuzzy

import recordlinkage

banking = pd.read_csv('datasets/banking dirty.csv', index_col = 'Unnamed: 0')

# Add an column and modify Tows
banking['acct_cur'] = 'euro'# or pd.NA for missing values

35



banking.loc[[0], 'account_opened'] = '2018-03-05"
banking.loc[[2], 'account_opened'] = 'January 26, 2018’
banking.loc[[3], 'account_opened'] '21-14-17"

# Find values of acct_cur that are equal to 'euro'
acct_eu = banking['acct_cur'] == 'euro'

# Convert acct_amount where <t 4s in euro to dollars
banking.loc[acct_eu, 'acct_amount'] = banking.loclacct_eu, 'acct_amount'] * 1.1

# Unify acct_cur column by changing 'euro' walues to 'dollar'
banking.loclacct_eu, 'acct_cur'] = 'dollar'

# Assert that only dollar currency remains
assert banking['acct_cur'].unique() == 'dollar'

# Print the header of account_opened
print (banking['account_opened'].head())

# Convert account_opened to datetime

banking['account_opened'] = pd.to_datetime(banking['account_opened'],
# Infer datetime format
infer_datetime_format = True,
# Return missing wvalue for error
errors = 'coerce')

# Get year of account opened
banking['acct_year'] = banking['account_opened'].dt.strftime('%Y"')

# Print acct_year
print(banking['acct_year'])

banking['birth_date'].info()

# Store fund columns to sum against
fund_columns = ['fund A', 'fund B', 'fund C', 'fund D']

# Find rows where fund_columns row sum == inv_amount
inv_equ = banking[fund_columns].sum(axis=1) == banking['inv_amount']

# Store consistent and inconsistent data
consistent_inv = banking[inv_equ]

inconsistent_inv = banking[~inv_equ]

# Store consistent and inconsistent data
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print ("Number of inconsistent investments: ", inconsistent_inv.shape[0])
print ("Number of consistent investments: ", consistent_inv.shape[0])

# Convert birth_date to datetime

banking['birth_date'] = pd.to_datetime(banking['birth_date'],
# Infer datetime format
infer_datetime_format = True,
# Return missing value for error
errors = 'coerce')

# Store today's date and find ages
today = dt.date.today()
ages_manual = today.year - banking['birth_date'].dt.year

# Find rows where age column == ages_manual
age_equ = ages_manual == banking['Age']

# Store consistent and inconsistent data
consistent_ages = banking[age_equ]
inconsistent_ages = banking[-~age_equl

# Store consistent and inconsistent data
print ("Number of inconsistent ages: ", inconsistent_ages.shape[0])
print ("Number of consistent ages: ", consistent_ages.shapel[0])

# Print number of missing values in banking
print (banking.isna() .sum())

# Visualize missingness matriz
msno.matrix(banking)
plt.show()

# Isolate missing and non missing values of inv_amount
missing_investors = banking[banking['inv_amount'].isna()]
investors = banking[~banking['inv_amount'].isna()]

# Describe complete DataFrame
investors.describe ()

# Describe missing DataFrame
missing_investors.describe()

# Sort banking by age and visualize

banking_sorted = banking.sort_values(by='Age')
msno.matrix(banking_sorted)
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plt.show()

# Drop missing values of cust_<d
banking_fullid = banking.dropna(subset = ['cust_id'])

# Compute estimated acct_amount
acct_imp = banking fullid['inv_amount'] * 5

# Impute missing acct_amount with corresponding acct_imp
banking_ imputed = banking_fullid.fillna({'acct_amount': acct_imp})

# Print number of missing values
print (banking_imputed.isna().sum())

0 2018-03-05
1 28-02-19
2 January 26, 2018
3 21-14-17
4 14-05-18
Name: account_opened, dtype: object
0 2018

1 NaN

2 NaN

3 NaN

4 NaN

95 NaN

96 NaN

o7 NaN

98 NaN

99 NaN

Name: acct_year, Length: 100, dtype: object
<class 'pandas.core.series.Series'>
Index: 100 entries, 0 to 99

Series name: birth_date

Non-Null Count Dtype

100 non-null object

dtypes: object(1)

memory usage: 5.6+ KB

Number of inconsistent investments: 8
Number of consistent investments: 92
Number of inconsistent ages: 92
Number of consistent ages: 8

cust_id 0]
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1

100

cust_id
birth_date
Age
acct_amount
inv_amount

O O O O O O O oo

fund_A
fund_B
fund_C
fund D
account_opened 99
last_transaction 0
acct_cur 0
acct_year 99

dtype: int64

There are only 8 and 92 rows affected by inconsistent inv_amount
and age values, respectively. In this case, it’s best to investigate the
underlying data sources before deciding on a course of action!

CHAPTER 4: RECORD LINKAGE
Chapter 4.1: Comparing strings

Awesome work on chapter 3! Welcome to the final chapter of this course, where we’ll discover
the world of record linkage. But before we get deep dive into record linkage, let’s sharpen our
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understanding of string similarity and minimum edit distance. Minimum edit distance Minimum
edit distance is a systematic way to identify how close 2 strings are. For example, let’s take a
look at the following two words: intention, and execution. The minimum edit distance between
them is the least possible amount of steps, that could get us from the word intention to execution,
with the available operations being inserting new characters, deleting them, substituting them,
and transposing consecutive characters. To get from intention to execution, we first start off by
deleting I from intention, and adding C between E and N. Our minimum edit distance so far is 2,
since these are two operations. Then we substitute the first N with E, T with X, and N with U,
leading us to execution! With the minimum edit distance being 5. The lower the edit distance,
the closer two words are. For example, the two different typos of reading have a minimum edit
distance of 1 between them and reading.

Minimum edit distance algorithms

There’s a variety of algorithms based on edit distance that differ on which operations they use,
how much weight attributed to each operation, which type of strings they’re suited for and more,
with a variety of packages to get each similarity. For this lesson, we’ll be comparing strings using
Levenshtein distance since it’s the most general form of string matching by using the thefuzz
package.

Simple string comparison

thefuzz is a package to perform string comparison. We first import fuzz from thefuzz, which
allow us to compare between single strings. Here we use fuzz’s WRatio function to compute the
similarity between reading and its typo, inputting each string as an argument. For any comparison
function using thefuzz, our output is a score from 0 to 100 with 0 being not similar at all, 100
being an exact match. Do not confuse this with the minimum edit distance score from earlier,
where a lower minimum edit distance means a closer match.

Partial strings and different orderings

The WRatio function is highly robust against partial string comparison with different orderings.
For example here we compare the strings Houston Rockets and Rockets, and still receive a high
similarity score. The same can be said for the strings Houston Rockets vs Los Angeles Lakers and
Lakers vs Rockets, where the team names are only partial and they are differently ordered.

Comparison with arrays

We can also compare a string with an array of strings by using the extract function from the process
module from fuzzy wuzzy. Extract takes in a string, an array of strings, and the number of possible
matches to return ranked from highest to lowest. It returns a list of tuples with 3 elements, the
first one being the matching string being returned, the second one being its similarity score, and
the third one being its index in the array.
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Collapsing categories with string similarity

In chapter 2, we learned that collapsing data into categories is an essential aspect of working
with categorical and text data, and we saw how to manually replace categories in a column of a
DataFrame. But what if we had so many inconsistent categories that a manual replacement is
simply not feasible? We can easily do that with string similarity!

Collapsing categories with string matching

Say we have DataFrame named survey containing answers from respondents from the state of New
York and California asking them how likely are you to move on a scale of 0 to 5. The state field was
free text and contains hundreds of typos. Remapping them manually would take a huge amount
of time. Instead, we’ll use string similarity. We also have a category DataFrame containing the
correct categories for each state. Let’s collapse the incorrect categories with string matching!

Collapsing all of the state

We first create a for loop iterating over each correctly typed state in the categories DataFrame.
For each state, we find its matches in the state column of the survey DataFrame, returning all
possible matches by setting the limit argument of extract to the length of the survey DataFrame.
Then we iterate over each potential match, isolating the ones only with a similarity score higher
or equal than 80 with an if statement. Then for each of those returned strings, we replace it with
the correct state using the loc method.

Record linkage

Record linkage attempts to join data sources that have similarly fuzzy duplicate values, so that
we end up with a final DataFrame with no duplicates by using string similarity. We’ll cover record
linkage in more detail in the next couple of lessons.

Exercise 4.1.1
The cutoff point

In this exercise, and throughout this chapter, you’ll be working with the restaurants DataFrame
which has data on various restaurants. Your ultimate goal is to create a restaurant recommendation
engine, but you need to first clean your data.

This version of restaurants has been collected from many sources, where the cuisine_type
column is riddled with typos, and should contain only italian, american and asian cuisine
types. There are so many unique categories that remapping them manually isn’t scalable, and it’s
best to use string similarity instead.
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Before doing so, you want to establish the cutoff point for the similarity score using the thefuzz’s
process.extract() function by finding the similarity score of the most distant typo of each
category.

Instructions

e Import process from thefuzz.

e Store the unique cuisine_types into unique_types.

e Calculate the similarity of 'asian', ‘'american', and 'italian' to all possible
cuisine_types using process.extract (), while returning all possible matches.

Remapping categories Il

In the last exercise, you determined that the distance cutoff point for remapping typos of
'american', 'asian', and 'italian' cuisine types stored in the cuisine_type column should

be 80.

In this exercise, you’re going to put it all together by finding matches with similarity scores equal
to or higher than 80 by using fuzywuzzy.process’s extract() function, for each correct cuisine
type, and replacing these matches with it. Remember, when comparing a string with an array of
strings using process.extract (), the output is a list of tuples where each is formatted like:

(closest match, similarity score, index of match)

Instructions

e Return all of the unique values in the cuisine_type column of restaurants.

o Asa first step, create a list of all possible matches, comparing 'italian' with the restaurant
types listed in the cuisine_type column.

o Within the for loop, use an if statement to check whether the similarity score in each
match is greater than or equal to 80.

o If it is, use .loc to select rows where cuisine_type in restaurants is equal to the current
match (which is the first element of match), and reassign them to be 'italian'.

o Using the variable cuisine to iterate through categories, embed your code from the pre-
vious step in an outer for loop.

e Inspect the final result.

Chapter 4.2: Generating pairs

Great work with lesson 1 - you now have a solid understanding how to calculate string similarity.
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Motivation

At the end of the last video exercise, we saw how record linkage attempts to join data sources
with fuzzy duplicate values. For example here are two DataFrames containing NBA games and
their schedules. They’ve both been scraped from different sites and we would want to merge them
together and have one DataFrame containing all unique games.

When joins won’t work

We see that there are duplicates values in both DataFrames with different naming marked here
in red, and non duplicate values, marked here in green. Since there are games happening at the
same time, no common unique identifier between the DataFrames, and the events are differently
named, a regular join or merge will not work. This is where record linkage comes in.

Record linkage

Record linkage is the act of linking data from different sources regarding the same entity. Generally,
we clean two or more DataFrames, generate pairs of potentially matching records, score these pairs
according to string similarity and other similarity metrics, and link them. All of these steps can
be achieved with the recordlinkage package, let’s find how!

Our DataFrames
Here we have two DataFrames, census__ A, and census_ B, containing data on individuals through-

out the states. We want to merge them while avoiding duplication using record linkage, since they
are collected manually and are prone to typos, there are no consistent IDs between them.

Generating pairs
We first want to generate pairs between both DataFrames. Ideally, we want to generate all
possible pairs between our DataFrames. But what if we had big DataFrames and ended up having

to generate millions if not billions of pairs? It wouldn’t prove scalable and could seriously hamper
development time.

Blocking

This is where we apply what we call blocking, which creates pairs based on a matching column,
which is in this case, the state column, reducing the number of possible pairs.
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Generating pairs

To do this, we first start off by importing recordlinkage. We then use the recordlinkage dot Index
function, to create an indexing object. This essentially is an object we can use to generate pairs
from our DataFrames. To generate pairs blocked on state, we use the block method, inputting the
state column as input. Once the indexer object has been initialized, we generate our pairs using
the dot index method, which takes in the two dataframes. The resulting object, is a pandas multi
index object containing pairs of row indices from both DataFrames, which is a fancy way to say
it is an array containing possible pairs of indices that makes it much easier to subset DataFrames
on.

Comparing the DataFrames

Since we've already generated our pairs, it’s time to find potential matches. We first start by
creating a comparison object using the recordlinkage dot compare function. This is similar to the
indexing object we created while generating pairs, but this one is responsible for assigning different
comparison procedures for pairs. Let’s say there are columns for which we want exact matches
between the pairs. To do that, we use the exact method. It takes in the column name in question
for each DataFrame, which is in this case date_of birth and state, and a label argument which lets
us set the column name in the resulting DataFrame. Now in order to compute string similarities
between pairs of rows for columns that have fuzzy values, we use the dot string method, which also
takes in the column names in question, the similarity cutoff point in the threshold argument, which
takes in a value between 0 and 1, which we here set to 0.85. Finally to compute the matches, we use
the compute function, which takes in the possible pairs, and the two DataFrames in question. Note
that you need to always have the same order of DataFrames when inserting them as arguments
when generating pairs, comparing between columns, and computing comparisons.

Finding matching pairs
The output is a multi index DataFrame, where the first index is the row index from the first

DataFrame, or census A, and the second index is a list of all row indices in census B. The columns
are the columns being compared, with values being 1 for a match, and 0 for not a match.

Finding the only pairs we want
To find potential matches, we just filter for rows where the sum of row values is higher than a

certain threshold. Which in this case higher or equal to 2. But we’ll dig deeper into these matches
and see how to use them to link our census DataFrames in the next lesson.
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Exercise 4.2.1
Pairs of restaurants

In the last lesson, you cleaned the restaurants dataset to make it ready for building a restau-
rants recommendation engine. You have a new DataFrame named restaurants_new with new
restaurants to train your model on, that’s been scraped from a new data source.

You’ve already cleaned the cuisine_type and city columns using the techniques learned through-
out the course. However you saw duplicates with typos in restaurants names that require record
linkage instead of joins with restaurants.

In this exercise, you will perform the first step in record linkage and generate possible pairs of
rows between restaurants and restaurants_new.

Instructions

o Instantiate an indexing object by using the Index() function from recordlinkage.
e Block your pairing on cuisine_type by using indexer‘s’ .block() method.
e Generate pairs by indexing restaurants and restaurants_new in that order.

Exercise 4.2.2
Similar restaurants

In the last exercise, you generated pairs between restaurants and restaurants_new in an effort
to cleanly merge both DataFrames using record linkage.

When performing record linkage, there are different types of matching you can perform between
different columns of your DataFrames, including exact matches, string similarities, and more.

Now that your pairs have been generated and stored in pairs, you will find exact matches in the
city and cuisine_type columns between each pair, and similar strings for each pair in the name
column.

Instructions

o Instantiate a comparison object using the recordlinkage.Compare() function.

e Use the appropriate comp_cl method to find exact matches between the city and
cuisine_type columns of both DataFrames.

e Use the appropriate comp_cl method to find similar strings with a 0.8 similarity threshold
in the name column of both DataFrames.

e Compute the comparison of the pairs by using the .compute () method of comp_cl.
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e Print out potential_matches, the columns are the columns being compared, with values
being 1 for a match, and 0 for not a match for each pair of rows in your DataFrames. To
find potential matches, you need to find rows with more than matching value in a column.
You can find them with

potential_matches[potential_matches.sum(axis = 1) >= n]

Where n is the minimum number of columns you want matching to ensure a proper duplicate find,
what do you think should the value of n be?

Chapter 4.3: Linking DataFrames

Awesome work on the first 2 lessons! You’ve made it to the last lesson of this course!

Record linkage

At this point, you've generated your pairs, compared them, and scored them. Now it’s time to
link your data!

Our DataFrames

Remember our census DataFrames from the video of the previous lesson?

What we’ve already done

We've already generated pairs between them, compared four of their columns, two for exact
matches and two for string similarity alongside a 0.85 threshold, and found potential matches.

What we’re doing now

Now it’s time to link both census DataFrames.

Our potential matches

Let’s look closely at our potential matches. It is a multi-index DataFrame, where we have two index
columns, record id 1, and record id 2. The first index column, stores indices from census A. The
second index column, stores all possible indices from census_ B, for each row index of census_A.
The columns of our potential matches are the columns we chose to link both DataFrames on,
where the value is 1 for a match, and 0 otherwise.
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Probable matches

The first step in linking DataFrames, is to isolate the potentially matching pairs to the ones we're
pretty sure of. We saw how to do this in the previous lesson, by subsetting the rows where the
row sum is above a certain number of columns, in this case 3. The output is row indices between
census A and census B that are most likely duplicates. Our next step is to extract the one of the
index columns, and subsetting its associated DataFrame to filter for duplicates. Here we choose
the second index column, which represents row indices of census B. We want to extract those
indices, and subset census_ B on them to remove duplicates with census_ A before appending
them together.

Get the indices

We can access a DataFrame’s index using the index attribute. Since this is a multi index
DataFrame, it returns a multi index object containing pairs of row indices from census A
and census_ B respectively. We want to extract all census_ B indices, so we chain it with the
get_ level values method, which takes in which column index we want to extract its values. We
can either input the index column’s name, or its order, which is in this case 1. To find the
duplicates in census B, we simply subset on all indices of census_ B, with the ones found through
record linkage. You can choose to examine them further for similarity with their duplicates in
census__ A, but if you're sure of your analysis, you can go ahead and find the non duplicates by
repeating the exact same line of code, except by adding a tilde at the beginning of your subset.
Now that you have your non duplicates, all you need is a simple append using the DataFrame
append method of census A, and you have your linked Data! To recap, what we did was build
on top of our previous work in generating pairs, comparing across columns and finding potential
matches. We then isolated all possible matches, where there are matches across 3 columns
or more, ensuring we tightened our search for duplicates across both DataFrames before we
link them. Extracted the row indices of census_ B where there are duplicates. Found rows of
census_ B where they are not duplicated with census_ A by using the tilde symbol. And linked
both DataFrames for full census results!

Exercise 4.3
Linking them together!

In the last lesson, you’ve finished the bulk of the work on your effort to link restaurants and
restaurants_new. You've generated the different pairs of potentially matching rows, searched for
exact matches between the cuisine_type and city columns, but compared for similar strings in
the name column. You stored the DataFrame containing the scores in potential_matches.

Now it’s finally time to link both DataFrames. You will do so by first extracting all row
indices of restaurants_new that are matching across the columns mentioned above from
potential_matches. Then you will subset restaurants_new on these indices, then append the
non-duplicate values to restaurants.

48



Instructions

« Isolate instances of potential_matches where the row sum is above or equal to 3 by using
the .sum() method.

o Extract the second column index from matches, which represents row indices of matching
record from restaurants_new by using the .get_level_values() method.

e Subset restaurants_new for rows that are not in matching_indices

e Append non_dup to restaurants.

# Import the course packages
import pandas as pd

import numpy as np

import datetime as dt

import matplotlib.pyplot as plt
import missingno as msno

import fuzzywuzzy

import recordlinkage

# Import the course datasets

restaurants = pd.read_csv('datasets/restaurants.mod.csv', index_col = 'Unnamed: 0')
restaurants_new = pd.read_csv('datasets/restaurants_new.mod.csv', index_col = 'Unnamed: 0')
categoriesl = {'cuisine': ['italian', 'asian', 'american']}

categories = pd.DataFrame(categoriesl)

# Import process from thefuzz
from thefuzz import process

# Store the unique values of cuisine_type in unique_types
unique_types = restaurants['cuisine_type'].unique()

# Calculate similarity of 'asian' to all values of unique_types
print (process.extract('asian', unique_types, limit = len(unique_types)))

# Calculate similarity of 'american' to all wvalues of unique_types
print(process.extract('american', unique_types, limit = len(unique_types)))

# Calculate similarity of 'italian' to all walues of unique_types
print(process.extract('italian', unique_types, limit = len(unique_types)))

# Iterate through categories
for cuisine in categories['cuisine']:
# Create a list of matches, comparing cuisine with the cuisine_type column
matches = process.extract(cuisine, restaurants['cuisine_type'], limit=restaurants.shape[0])
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# Iterate through the list of matches
for match in matches:
# Check whether the similarity score ts greater than or equal to 80
if match[1] >= 80:
# If it is, select all rows where the cuisine_type ts spelled this way, and set them to the
restaurants.loc[restaurants['cuisine_type']l == match[0], 'cuisine_type']l = cuisine

# Iterate through categories (THE SAME AS ABOVE)
for cuisine in categories['cuisine']:
# Create a list of matches, comparing cuisine with the cutsine_type column
matches = process.extract(cuisine, restaurants_new['cuisine_type'], limit=len(restaurants_new.c

# Iterate through categories (THE SAME AS ABOVE)
for cuisine in categories['cuisine']:
# Create a list of matches, comparing cuisine with the cuisine_type column
matches = process.extract(cuisine, restaurants_new['cuisine_type'], limit=len(restaurants_new.c

# Iterate through the list of matches
for match in matches:
# Check whether the similarity score is greater than or equal to 80
if match[1] >= 80:
# If it is, select all rows where the cuisine_type ts spelled this way, and set them to the
restaurants_new.loc[restaurants_new['cuisine_type'] == match[0], 'cuisine_type'] = cuisine

# Inspect the final result
print(restaurants['cuisine_type'] .unique())

# Inspect the final result
print(restaurants_new['cuisine_type'].unique())

# Create an indexer and object and find possible pairs
indexer = recordlinkage.Index()

# Block pairing on cuisine_type
indexer.block('cuisine_type')

# Generate pairs
pairs = indexer.index(restaurants, restaurants_new)

# Create a comparison object
comp_cl = recordlinkage.Compare()

# Find exact matches on city, cuisine_types

comp_cl.exact('city', 'city', label='city')
comp_cl.exact('cuisine_type', 'cuisine_type', label = 'cuisine_type')
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# Find similar matches of rest_name
comp_cl.string('name', 'name', label='name', threshold = 0.8)

# Get potential matches and print
potential_matches = comp_cl.compute(pairs, restaurants, restaurants_new)
print (potential_matches)

# Isolate potential matches with row sum >=3
matches = potential_matches[potential_matches.sum(axis = 1) >= 3]

# For this exzample, tightening your selection critertia will ensure good duplicate finds!

# Get values of second column index of matches
matching_indices = matches.index.get_level_values(1)

# Subset restaurants_new based on non-duplicate values
non_dup = restaurants_new[~restaurants_new.index.isin(matching_indices)]

# Append non_dup to restaurants
full_restaurants = pd.concat([restaurants, non_dup], ignore_index=True)
print (full_restaurants)

[(‘asian', 100), ('asiane', 91), ('asiann', 91), ('asiian', 91), ('asiaan', 91), ('asianne', 83),
[('american', 100), ('ameerican', 94), ('aamerican', 94), ('ameriican', 94), ('amerrican', 94), (
[(*italian', 100), ('italiann', 93), ('italiano', 93), ('italiaan', 93), ('italiian', 93), ('ital
['american' 'asian' 'italian']
['american' 'asian' 'italian']

city cuisine_type mname

0 © 0 1 0.0
1 0 1 0.0
2 0 1 0.0
3 1 1 0.0
4 0 1 0.0
335 75 0 1 0.0
76 0 1 0.0
77 0 1 0.0
78 0 1 0.0
79 0 1 0.0

[10991 rows x 3 columns]

name addr city \
0 arnie morton's of chicago 435 s. la cienega blv . los angeles
1 art's delicatessen 12224 ventura blvd. studio city
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2 campanile 624 s. la brea ave. los angeles

3 fenix 8358 sunset blvd. west hollywood

4 grill on the alley 9560 dayton way los angeles

405 feast 1949 westwood blvd. west la

406 mulberry 17040 ventura blvd. encino

407 matsuhissa 129 n. la cienega blvd. beverly hills

408 jiraffe 502 santa monica blvd santa monica

409 martha's 22nd street grill 25 22nd st. hermosa beach
phone type cuisine_type

0 3102461501 american american

1 8187621221 american american

2 2139381447 american american

3 2138486677 american american

4 3102760615 american american

405 3104750400 chinese asian

406 8189068881 pizza asian

407 3106599639 asian asian

408 3109176671 californian italian

409 3103767786 american italian

[410 rows x 6 columns]

e Important

Another code that is similar to the one in the previous code

# Iterate through categories (THE SAME AS ABOVE)
for cuisine in categories:

# Create a list of matches, comparing cuisine with the cuisine_type column

matches = process.extract(cuisine, restaurants['cuisine_type']l, limit=len(res

# Iterate through the list of matches
for match in matches:
# Check whether the similarity score is greater than or equal to 80
if match[1] >= 80:
# If it 1is, select all rows where the cuisine_type ©s spelled this way, a
restaurants.loc[restaurants['cuisine_type']l == match[0]] = cuisine
# Inspect the final result
print(restaurants['cuisine_type'] .unique())

taurants.cuisine

nd set them to t
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EXPLORE DATASETS

Use the DataFrames imported in the first cell to explore the data and practice your skills!

For each DataFrame, inspect the data types of each column and, where needed, clean and
convert columns into the correct data type. You should also rename any columns to have
more descriptive titles.

Identify and remove all the duplicate rows in ride_sharing.
Inspect the unique values of all the columns in airlines and clean any inconsistencies.

For the airlines DataFrame, create a new column called International from
dest_region, where values representing US regions map to False and all other re-
gions map to True.

The banking DataFrame contains out of date ages. Update the Age column using today’s
date and the birth_date column.

Clean the restaurants_new DataFrame so that it better matches the categories in the city
and type column of the restaurants DataFrame. Afterward, given typos in restaurant
names, use record linkage to generate possible pairs of rows between restaurants and
restaurants_new using criteria you think is best.
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