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0.1 Chapter 1: Hypothesis Testing Fundamentals

How does hypothesis testing work and what problems can it solve? To find out, you’ll walk through
the workflow for a one sample proportion test. In doing so, you’ll encounter important concepts
like z-scores, p-values, and false negative and false positive errors.

0.1.1 Chapter 1.1: Hypothesis tests and z-scores

Hi, I’m James. Welcome to this course on hypothesis testing in Python. To start, let’s look at a
real-world example where a hypothesis test was crucial in a decision-making process.
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A/B testing

In 2013, Electronic Arts, or EA, launched a video game called SimCity 5. Leading up to its release,
they wanted to increase pre-order sales. They used an experimental design technique called A/B
testing, which has roots in hypothesis testing, to test different advertising scenarios and see which
improved sales the most. Website visitors were split into a control group and a treatment group.
Each group saw a different version of the game’s pre-order sales page.

1. 1 Image credit: “Electronic Arts” by majaX1 CC BY-NC-SA 2.0

Retail webpage A/B test

Here’s each version of the SimCity 5 pre-order page. The control group saw the version with a
banner advertising money off their next purchase with each pre-order. The treatment group saw
the version without the banner. EA compared the percentage of checkouts for the two groups to
see which performed best. Our naive guess would be that the advertisement increased pre-order
sales.

A/B test results

The results of the A/B test were surprising. The treatment page without the advertisement
resulted in 43 percent higher sales than the control page with the advert. The experiment proved
that our intuition that more discount adverts would result in more sales was false. We might ask
ourselves, was the 43 percent difference a meaningful difference between the control and treatment
groups, or was it just random chance? To get this answer, we’d need the original dataset from
EA, which isn’t publicly available. However, the method to answering this question of significance
would involve techniques from both the Sampling in Python course and from this course.

Stack Overflow Developer Survey 2020

Each year, Stack Overflow surveys its users, who are primarily software developers, about them-
selves, how they use Stack Overflow, their work, and the development tools they use. In this course,
we’ll look at a subset of the survey responses from users who identified as Data Scientists.

Hypothesizing about the mean

Let’s hypothesize that the mean annual compensation of the population of data scientists is 110,000
dollars. We can initially examine the mean annual compensation from the sample survey data.
Annual compensation, converted to dollars, is stored in the converted_comp column. The sample
mean is a type of point estimate, which is another name for a summary statistic. We can calculate
it with pandas using the .mean method on the converted_comp Series. The result is different
from our hypothesis, but is it meaningfully different?
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Generating a bootstrap distribution

To answer this, we need to generate a bootstrap distribution of sample means. This is done by
resampling the dataset, calculating the sample mean for that resample, then repeating those steps
to create a list of sample means.

1. 1 Bootstrap distributions are taught in Chapter 4 of Sampling in Python

Visualizing the bootstrap distribution

The histogram of the bootstrap distribution is a bell shape. Its bell shape means that it’s roughly
normally distributed. Notice that 110,000 is on the left of the distribution.

Standard error

Recall that the standard deviation of the sample statistics in the bootstrap distribution estimates
the standard error of the statistic.

z-scores

Since variables have arbitrary units and ranges, before we test our hypothesis, we need to stan-
dardize the values. A common way of standardizing values is to subtract the mean, and divide by
the standard deviation. For hypothesis testing, we use a variation where we take the sample statis-
tic, subtract the hypothesized parameter value, and divide by the standard error. The result is
called a z-score. Here are the values we calculated earlier. The sample mean annual compensation
for data scientists of around 120,000 dollars, minus the hypothesized compensation of 110,000,
divided by the standard error gives a z-score of one-point-seven-zero-seven.

Standard value = value − mean
standard deviation

𝑧 = sample statistic − hypothesized parameter value
standard error

Testing the hypothesis

Is that a big or small number? Determining that is the goal of this course. In particular, we can
now state one of the uses of hypothesis testing: determining whether a sample statistic is close to
or far away from an expected value.
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Standard normal (z) distribution

One final thing. Here’s a plot of the probability density function for the standard normal dis-
tribution, which is a normal distribution with mean of zero and standard deviation of one. It’s
often called the z-distribution, and z-scores are related to this distribution. We’ll encounter the
z-distribution throughout this course.

0.1.2 Exercise 1.1.1

Calculating the sample mean

The late_shipments dataset contains supply chain data on the delivery of medical supplies. Each
row represents one delivery of a part. The late columns denotes whether or not the part was
delivered late. A value of "Yes" means that the part was delivered late, and a value of "No" means
the part was delivered on time.

You’ll begin your analysis by calculating a point estimate (or sample statistic), namely the pro-
portion of late shipments.

In pandas, a value’s proportion in a categorical DataFrame column can be quickly calculated using
the syntax:

prop = (df['col'] == val).mean()

0.1.2.1 Instructions

1. Print the late_shipments dataset.
2. Calculate the proportion of late shipments in the sample; that is, the mean cases where the

late column is "Yes".

# Import pandas
import pandas as pd

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Print the late_shipments dataset
print(late_shipments)

# Calculate the proportion of late shipments
late_prop_samp = (late_shipments['late'] == "Yes").mean()

# Print the results
print(late_prop_samp)

5



id country managed_by fulfill_via vendor_inco_term \
0 36203.0 Nigeria PMO - US Direct Drop EXW
1 30998.0 Botswana PMO - US Direct Drop EXW
2 69871.0 Vietnam PMO - US Direct Drop EXW
3 17648.0 South Africa PMO - US Direct Drop DDP
4 5647.0 Uganda PMO - US Direct Drop EXW
.. ... ... ... ... ...
995 13608.0 Uganda PMO - US Direct Drop DDP
996 80394.0 Congo, DRC PMO - US Direct Drop EXW
997 61675.0 Zambia PMO - US Direct Drop EXW
998 39182.0 South Africa PMO - US Direct Drop DDP
999 5645.0 Botswana PMO - US Direct Drop EXW

shipment_mode late_delivery late product_group sub_classification \
0 Air 1.0 Yes HRDT HIV test
1 Air 0.0 No HRDT HIV test
2 Air 0.0 No ARV Adult
3 Ocean 0.0 No ARV Adult
4 Air 0.0 No HRDT HIV test - Ancillary
.. ... ... ... ... ...
995 Air 0.0 No ARV Adult
996 Air 0.0 No HRDT HIV test
997 Air 1.0 Yes HRDT HIV test
998 Ocean 0.0 No ARV Adult
999 Air 0.0 No HRDT HIV test

... line_item_quantity line_item_value pack_price unit_price \
0 ... 2996.0 266644.00 89.00 0.89
1 ... 25.0 800.00 32.00 1.60
2 ... 22925.0 110040.00 4.80 0.08
3 ... 152535.0 361507.95 2.37 0.04
4 ... 850.0 8.50 0.01 0.00
.. ... ... ... ... ...
995 ... 121.0 9075.00 75.00 0.62
996 ... 292.0 9344.00 32.00 1.60
997 ... 2127.0 170160.00 80.00 0.80
998 ... 191011.0 861459.61 4.51 0.15
999 ... 200.0 14398.00 71.99 0.72

manufacturing_site first_line_designation weight_kilograms \
0 Alere Medical Co., Ltd. Yes 1426.0
1 Trinity Biotech, Plc Yes 10.0
2 Hetero Unit III Hyderabad IN Yes 3723.0
3 Aurobindo Unit III, India Yes 7698.0
4 Inverness Japan Yes 56.0
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.. ... ... ...
995 Janssen-Cilag, Latina, IT Yes 43.0
996 Trinity Biotech, Plc Yes 99.0
997 Alere Medical Co., Ltd. Yes 881.0
998 Aurobindo Unit III, India Yes 16234.0
999 Inverness Japan Yes 46.0

freight_cost_usd freight_cost_groups line_item_insurance_usd
0 33279.83 expensive 373.83
1 559.89 reasonable 1.72
2 19056.13 expensive 181.57
3 11372.23 expensive 779.41
4 360.00 reasonable 0.01
.. ... ... ...
995 199.00 reasonable 12.72
996 2162.55 reasonable 13.10
997 14019.38 expensive 210.49
998 14439.17 expensive 1421.41
999 1028.18 reasonable 23.04

[1000 rows x 27 columns]
0.061

0.1.3 Exercise 1.1.2

Calculating a z-score

Since variables have arbitrary ranges and units, we need to standardize them. For example, a
hypothesis test that gave different answers if the variables were in Euros instead of US dollars
would be of little value. Standardization avoids that.

One standardized value of interest in a hypothesis test is called a z-score. To calculate it, you need
three numbers: the sample statistic (point estimate), the hypothesized statistic, and the standard
error of the statistic (estimated from the bootstrap distribution).

The sample statistic is available as late_prop_samp.

late_shipments_boot_distn is a bootstrap distribution of the proportion of late shipments, avail-
able as a list.

Instructions

• Hypothesize that the proportion of late shipments is 6%.
• Calculate the standard error from the standard deviation of the bootstrap distribution.
• Calculate the z-score.

7



# Import the necessary libraries
import pandas as pd
import numpy as np

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Print the late_shipments dataset
print(late_shipments)

# Calculate the proportion of late shipments
late_prop_samp = (late_shipments['late'] == "Yes").mean()

# Print the results
print(late_prop_samp)

# Set the random seed for reproducibility
np.random.seed(42)

# Number of bootstrap samples
n_bootstrap_samples = 5000

# Generate bootstrap distribution
late_shipments_boot_distn = [

(late_shipments.sample(frac=1, replace=True)['late'] == "Yes").mean()
for _ in range(n_bootstrap_samples)

]

# Hypothesize that the proportion is 6%
late_prop_hyp = 0.06

# Calculate the standard error
std_error = np.std(late_shipments_boot_distn, ddof=1)

# Find z-score of late_prop_samp
z_score = (late_prop_samp - late_prop_hyp)/std_error

# Print z_score
print(z_score)

id country managed_by fulfill_via vendor_inco_term \
0 36203.0 Nigeria PMO - US Direct Drop EXW
1 30998.0 Botswana PMO - US Direct Drop EXW
2 69871.0 Vietnam PMO - US Direct Drop EXW
3 17648.0 South Africa PMO - US Direct Drop DDP
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4 5647.0 Uganda PMO - US Direct Drop EXW
.. ... ... ... ... ...
995 13608.0 Uganda PMO - US Direct Drop DDP
996 80394.0 Congo, DRC PMO - US Direct Drop EXW
997 61675.0 Zambia PMO - US Direct Drop EXW
998 39182.0 South Africa PMO - US Direct Drop DDP
999 5645.0 Botswana PMO - US Direct Drop EXW

shipment_mode late_delivery late product_group sub_classification \
0 Air 1.0 Yes HRDT HIV test
1 Air 0.0 No HRDT HIV test
2 Air 0.0 No ARV Adult
3 Ocean 0.0 No ARV Adult
4 Air 0.0 No HRDT HIV test - Ancillary
.. ... ... ... ... ...
995 Air 0.0 No ARV Adult
996 Air 0.0 No HRDT HIV test
997 Air 1.0 Yes HRDT HIV test
998 Ocean 0.0 No ARV Adult
999 Air 0.0 No HRDT HIV test

... line_item_quantity line_item_value pack_price unit_price \
0 ... 2996.0 266644.00 89.00 0.89
1 ... 25.0 800.00 32.00 1.60
2 ... 22925.0 110040.00 4.80 0.08
3 ... 152535.0 361507.95 2.37 0.04
4 ... 850.0 8.50 0.01 0.00
.. ... ... ... ... ...
995 ... 121.0 9075.00 75.00 0.62
996 ... 292.0 9344.00 32.00 1.60
997 ... 2127.0 170160.00 80.00 0.80
998 ... 191011.0 861459.61 4.51 0.15
999 ... 200.0 14398.00 71.99 0.72

manufacturing_site first_line_designation weight_kilograms \
0 Alere Medical Co., Ltd. Yes 1426.0
1 Trinity Biotech, Plc Yes 10.0
2 Hetero Unit III Hyderabad IN Yes 3723.0
3 Aurobindo Unit III, India Yes 7698.0
4 Inverness Japan Yes 56.0
.. ... ... ...
995 Janssen-Cilag, Latina, IT Yes 43.0
996 Trinity Biotech, Plc Yes 99.0
997 Alere Medical Co., Ltd. Yes 881.0
998 Aurobindo Unit III, India Yes 16234.0
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999 Inverness Japan Yes 46.0

freight_cost_usd freight_cost_groups line_item_insurance_usd
0 33279.83 expensive 373.83
1 559.89 reasonable 1.72
2 19056.13 expensive 181.57
3 11372.23 expensive 779.41
4 360.00 reasonable 0.01
.. ... ... ...
995 199.00 reasonable 12.72
996 2162.55 reasonable 13.10
997 14019.38 expensive 210.49
998 14439.17 expensive 1421.41
999 1028.18 reasonable 23.04

[1000 rows x 27 columns]
0.061
0.1321627029889662

0.1.4 Chapter 1.2: p-values

Hypothesis tests are like criminal trials.

Criminal trials

There are two possible true states: the defendant either committed the crime, or didn’t. There
are also two possible outcomes: a guilty or not guilty verdict. The initial assumption is that
the defendant is not guilty, and the prosecution team must present evidence beyond a reasonable
doubt that the defendant committed the crime for a guilty verdict to be given.

Age of first programming experience

Let’s return to the Stack Overflow survey. The age_first_code_cut variable classifies when
the user began programming. If they were 14 or older, they are classified as adult; otherwise,
child. Suppose previous research suggests that 35 percent of software developers programmed as
children. This raises a question answerable with our dataset. Does our sample provide evidence
that a greater proportion of data scientists started programming as children?

Definitions

Let’s specify some definitions. A hypothesis is a statement about a population parameter. We
don’t know the true value of this population parameter; we can only make inferences about it
from the data. Hypothesis tests compare two competing hypotheses. These two hypotheses are
the null hypothesis, representing the existing idea, and the alternative hypothesis, representing
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a new idea that challenges the existing one. They are denoted H-naught and H-A, respectively.
Here, the null hypothesis is that the proportion of data scientists that started programming as
children follows the research on software developers, at 35 percent. The alternative hypothesis is
that the percentage is greater than 35.

1. 1 “Naught” is British English for “zero”. For historical reasons, “H-naught” is the interna-
tional convention for pronouncing the null hypothesis.

Criminal trials vs. hypothesis testing

Returning to our criminal trial comparison, the defendant can be either guilty or not guilty, and
likewise, only one of the hypotheses can be true. Initially, the defendant is assumed to be not
guilty and, similarly, we initially assume that the null hypothesis is true. This only changes if
the sample provides enough evidence to reject it. Rather than saying we accept the alternative
hypothesis, it is convention to refer to rejecting the null hypothesis, or failing to reject the null
hypothesis. If the evidence is “beyond a reasonable doubt” that the defendant committed the
crime, then a “guilty” verdict is given. The hypothesis testing equivalent of “beyond a reasonable
doubt” is known as the significance level - more on this later in the chapter.

One-tailed and two-tailed tests

The tails of a distribution are the left and right edges of its PDF. Hypothesis tests determine
whether the sample statistics lie in the tails of the null distribution, which is the distribution of
the statistic if the null hypothesis was true. There are three types of tests, and the phrasing of the
alternative hypothesis determines which type we should use. If we are checking for a difference
compared to a hypothesized value, we look for extreme values in either tail and perform a two-tailed
test. If the alternative hypothesis uses language like “less” or “fewer”, we perform a left-tailed
test. Words like “greater” or “exceeds” correspond to a right-tailed test. For the Stack Overflow
hypothesis test, we need a right-tailed test since we are looking for extreme values in the right
tail.

p-values

p-values measure the strength of support for the null hypothesis, or in other words, they measure
the probability of obtaining a result, assuming the null hypothesis is true. Large p-values mean our
statistic is producing a result that is likely not in a tail of our null distribution, and chance could
be a good explanation for the result. Small p-values mean our statistic is producing a result likely
in the tail of our null distribution. Because p-values are probabilities, they are always between
zero and one.
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Calculating the z-score

To calculate the p-value, we must first calculate the z-score. We calculate the sample statistic, in
this case the proportion of data scientists who started programming as children. The hypothesized
value from the null hypothesis is 35 percent. We get the standard error from the standard deviation
of the bootstrap distribution, and the z-score is the difference between the proportions, divided
by the standard error.

Calculating the p-value

We pass the z-score to the standard normal CDF, norm.cdf, from scipy.stats with the default
values of mean 0 and standard deviation of 1. As we’re performing a right-tail test, not a left-tail
test, the p-value is calculated by taking one minus the norm.cdf result. The p-value is three out
of 100,000.

0.1.5 Exercise 1.2.1

Calculating p-values

In order to determine whether to choose the null hypothesis or the alternative hypothesis, you
need to calculate a p-value from the z-score.

You’ll now return to the late shipments dataset and the proportion of late shipments.

The null hypothesis, 𝐻𝑜, is that the proportion of late shipments is six percent.

The alternative hypothesis, 𝐻𝐴, is that the proportion of late shipments is greater than six
percent.

Instructions

• Calculate the z-score of late_prop_samp.
• Calculate the p-value for the z-score, using a right-tailed test.

# Import the necessary libraries
import pandas as pd
import numpy as np
from scipy.stats import norm

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Calculate the proportion of late shipments
late_prop_samp = (late_shipments['late'] == "Yes").mean()

# Set the random seed for reproducibility
np.random.seed(42)
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# Number of bootstrap samples
n_bootstrap_samples = 5000

# Generate bootstrap distribution
late_shipments_boot_distn = [

(late_shipments.sample(frac=1, replace=True)['late'] == "Yes").mean()
for i in range(n_bootstrap_samples)

]

# Hypothesize that the proportion is 6%
late_prop_hyp = 0.06

# Calculate the standard error
std_error = np.std(late_shipments_boot_distn, ddof=1)

# Find z-score of late_prop_samp
z_score = (late_prop_samp - late_prop_hyp)/std_error

# Calculate the z-score of late_prop_samp
z_score = (late_prop_samp - late_prop_hyp)/std_error

# Calculate the p-value
p_value = 1 - norm.cdf(z_score, loc=0, scale=1)

# Print the p-value
print(p_value)

0.4474278004961735

0.1.6 Chapter 1.3: Statistical significance

Last time, we introduced p-values.

p-value recap

p-values quantify how much evidence there is for the null hypothesis. Large p-values indicate a
lack of evidence for the alternative hypothesis, sticking with the assumed null hypothesis instead.
Small p-values make us doubt this original assumption in favor of the alternative hypothesis. What
defines the cutoff point between a small p-value and a large one?
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Significance level

The cutoff point is known as the significance level, and is denoted alpha. The appropriate signifi-
cance level depends on the dataset and the discipline worked in. Five percent is the most common
choice, but ten percent and one percent are also popular. The significance level gives us a decision
process for which hypothesis to support. If the p-value is less than or equal to alpha, we reject the
null hypothesis. Otherwise, we fail to reject it. It’s important that we decide what the appropriate
significance level should be before we run our test. Otherwise, there is a temptation to decide on
a significance level that lets us choose the hypothesis we want.

Calculating the p-value

The workflow starts with setting the significance level, in this case point-zero-five. Next, we
calculate the sample mean and assign the hypothesized mean. For the z-score, we also need the
standard error, which we obtain from the bootstrap distribution. Then we calculate the z-score
using the sample mean, hypothesized mean, and standard error, and use the standard normal
CDF to get the p-value.

Making a decision

In this case, the p-value of three times ten to the minus five is less than or equal to 0.5, so we reject
the null hypothesis. We have strong evidence for the alternative hypothesis that the proportion
of data scientists that started programming as children is greater than 35 percent.

Confidence intervals

To get a sense of the potential values of the population parameter, it’s common to choose a
confidence interval level of one minus the significance level. For a significance level of point-zero-
five, we’d use a 95 percent confidence interval. Here’s the calculation using the quantile method.
The interval provides a range of plausible values for the population proportion of data scientists
that programmed as children.

Types of errors

Returning to the criminal trial analogy, there are two possible truth states and two possible test
outcomes, amounting to four combinations. Two of these indicate that the verdict was correct. If
the defendant didn’t commit the crime, but the verdict was guilty, they are wrongfully convicted.
If the defendant committed the crime, but the verdict was not guilty, they got away with it. These
are both errors in justice. Similarly, for hypothesis testing, there are two ways to get it right, and
two types of error. If we support the alternative hypothesis when the null hypothesis was correct,
we made a false positive error. If we support the null hypothesis when the alternative hypothesis
was correct, we made a false negative error. These errors are sometimes known as type one and
type two errors, respectively.
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Possible errors in our example

In the case of data scientists coding as children, if we had a p-value less than or equal to the
significance level, and rejected the null hypothesis, it’s possible we made a false positive error.
Although we thought data scientists started coding as children at a higher rate, it may not be true
in the whole population. Conversely, if the p-value was greater than the significance level, and we
failed to reject the null hypothesis, it’s possible we made a false negative error.

0.1.7 Exercise 1.3.1

Calculating a confidence interval

If you give a single estimate of a sample statistic, you are bound to be wrong by some amount.
For example, the hypothesized proportion of late shipments was 6%. Even if evidence suggests
the null hypothesis that the proportion of late shipments is equal to this, for any new sample of
shipments, the proportion is likely to be a little different due to sampling variability. Consequently,
it’s a good idea to state a confidence interval. That is, you say, “we are 95% ‘confident’ that the
proportion of late shipments is between A and B” (for some value of A and B).

Sampling in Python demonstrated two methods for calculating confidence intervals. Here, you’ll
use quantiles of the bootstrap distribution to calculate the confidence interval.

Instructions

• Calculate a 95% confidence interval from late_shipments_boot_distn using the quantile
method, labeling the lower and upper intervals lower and upper.

• Does the confidence interval match up with the conclusion to stick with the original assump-
tion that 6% is a reasonable value for the unknown population parameter?

Yes, since 0.06 is included in the 95% confidence interval and we failed to reject 𝐻𝑂 due to a large
p-value, the results are similar.

# Import the necessary libraries
import pandas as pd
import numpy as np
from scipy.stats import norm

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Calculate the proportion of late shipments
late_prop_samp = (late_shipments['late'] == "Yes").mean()

# Set the random seed for reproducibility
np.random.seed(42)
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# Number of bootstrap samples
n_bootstrap_samples = 5000

# Generate bootstrap distribution
late_shipments_boot_distn = [

(late_shipments.sample(frac=1, replace=True)['late'] == "Yes").mean()
for i in range(n_bootstrap_samples)

]

# Calculate 95% confidence interval using quantile method
lower = np.quantile(late_shipments_boot_distn, 0.025)
upper = np.quantile(late_shipments_boot_distn, 0.975)

# Print the confidence interval
print((lower, upper))

(0.046, 0.076)

0.2 Chapter 2: Two-Sample and ANOVA Tests

In this chapter, you’ll learn how to test for differences in means between two groups using t-tests
and extend this to more than two groups using ANOVA and pairwise t-tests.

0.2.1 Chapter 2.1: Performing t-tests

In the previous chapter, we calculated the z-score, which was a test statistic for a single variable.

Two-sample problems

Here, we’ll look at a related problem of comparing sample statistics across groups in a variable.
In the Stack Overflow dataset, converted_comp is a numerical variable of annual compensation.
age_first_code_cut is a categorical variable with two levels: child and adult, which describe
when the user started programming. We can ask questions about differences in compensation
across the two age groups, such as, are users who first programmed as a child better compensated
than those that started as adults?

Hypotheses

The null hypothesis is that the population mean for the two groups is the same, and the alternative
hypothesis is that the population mean for users who started coding as children is greater than for
users who started coding as adults. We can write these hypotheses using equations. Mu represents
an unknown population mean, and we use subscripts to denote which group the population mean
belongs to. An alternate way of writing the equations is to compare the differences in population
means to zero. Zero here corresponds to our hypothesized value for the difference in means.
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Calculating groupwise summary statistics

To calculate summary statistics for each group, we start with the sample, group by the categorical
variable, and then compute on the numeric variable. A pandas way of doing this is shown,
calculating the mean of the converted_comp column after grouping by age_first_code_cut.
Here, the child programmers have a mean compensation of 132,000 dollars compared to around
111,000 for adult programmers. Is that increase statistically significant or could it be explained
by sampling variability?

Test statistics

Although we don’t know the population mean, we estimate it using the sample mean. x-bar is
used to denote a sample mean. Then we use subscripts to denote which group a sample mean cor-
responds to. The difference between these two sample means is the test statistic for the hypothesis
test. The z-scores we saw in Chapter 1 are a type of standardized test statistic.

Standardizing the test statistic

z-scores are calculated by taking the sample statistic, subtracting the mean of this statistic as the
population parameter of interest, then dividing by the standard error. In the two sample case,
the test statistic, denoted t, uses a similar equation. We take the difference between the sample
statistics for the two groups, subtract the population difference between the two groups, then
divide by the standard error.

Standard error

To calculate the standard error, needed for the denominator of the test statistic equation, boot-
strapping tends to be a good option. However, there is an easier way to approximate it. We
calculate the standard deviation of the numeric variable for each group in the sample, and the
number of observations in each group. Then enter those values into the equation and compute
the result.

Assuming the null hypothesis is true

Here’s the test statistic equation again. If we assume that the null hypothesis is true, there’s a
simplification we can make. The null hypothesis assumes that the population means are equal,
and their difference is zero, so the population term in the numerator disappears. Inserting the
approximation for the standard error, we now have a way of calculating the test statistic using
only calculations on the sample dataset.

Calculations assuming the null hypothesis is true

We need the mean, standard deviation, and number of observations for each group to fill in the
formula for t. We again use groupby and method combinations with mean, std, and count.
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Calculating the test statistic

Assigning the values to six different variables, the numerator is a subtraction of the sample means,
and the denominator is like a weighted hypotenuse. The t-statistic is around 1.78. Just as with
z-scores, we can’t draw any conclusions yet; for that, we’ll need to wait for the next unit.

0.2.2 Exercise 2.1.1

Two sample mean test statistic

The hypothesis test for determining if there is a difference between the means of two populations
uses a different type of test statistic to the z-scores you saw in Chapter 1. It’s called “t”, and it
can be calculated from three values from each sample using this equation.

𝑡 = ̄𝑥𝑐ℎ𝑖𝑙𝑑 − ̄𝑥𝑎𝑑𝑢𝑙𝑡

√ 𝑠2
𝑐ℎ𝑖𝑙𝑑

𝑛𝑐ℎ𝑖𝑙𝑑
+ 𝑠2

𝑎𝑑𝑢𝑙𝑡
𝑛𝑎𝑑𝑢𝑙𝑡

While trying to determine why some shipments are late, you may wonder if the weight of the
shipments that were on time is less than the weight of the shipments that were late. The
late_shipments dataset has been split into a “yes” group, where late == "Yes" and a “no”
group where late == "No". The weight of the shipment is given in the weight_kilograms vari-
able.

Instructions

• Calculate the numerator of the 𝑡 test statistic.
• Calculate the denominator of the 𝑡 test statistic.
• Use those two numbers to calculate the 𝑡 test statistic.

# Import the necessary libraries
import pandas as pd
import numpy as np
from scipy.stats import norm

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

xbar = late_shipments.groupby("late")["weight_kilograms"].mean()
s = late_shipments.groupby("late")["weight_kilograms"].std()
n = late_shipments.groupby("late")["weight_kilograms"].count()

# The mean weight for both category in the 'late' column
xbar_no = xbar.get('No')
xbar_yes = xbar.get('Yes')
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# The standard deviation weight for both category in the 'late' column
s_no = s.get('No')
s_yes = s.get('Yes')

# The sample size for both category in the 'late' column
n_no = n.get('No')
n_yes = n.get('Yes')

# Calculate the numerator of the test statistic
numerator = xbar_yes - xbar_no

# Calculate the denominator of the test statistic
denominator = np.sqrt(s_no ** 2/n_no + s_yes ** 2/n_yes)

# Calculate the test statistic
t_stat = numerator/denominator

# Print the test statistic
print(t_stat)

2.3936661778766433

Note

When testing for differences between means, the test statistic is called ‘t’ rather than ‘z’, and
can be calculated using six numbers from the samples. Here, the value is about -2.39 or 2.39,
depending on the order you calculated the numerator.

0.2.3 Chapter 2.2: Calculating p-values from t-statistics

In the Section 0.2.1, we calculated the test statistic t.

t-distributions

The test statistic, t, follows a t-distribution. t-distributions have a parameter called the degrees of
freedom, or df for short. Here’s a line plot of the PDF of a t-distribution with one degree of freedom
in yellow, and the PDF of a normal distribution in blue dashes. Notice that the t-distribution
for small degrees of freedom has fatter tails than the normal distribution, but otherwise they look
similar.
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Degrees of freedom

As we increase the degrees of freedom, the t-distribution gets closer to the normal distribution. In
fact, a normal distribution is a t-distribution with infinite degrees of freedom. Degrees of freedom
are defined as the maximum number of logically independent values in the data sample. That’s a
fairly tricky concept, so let’s try an example.

Calculating degrees of freedom

Suppose our dataset has 5 independent observations, and that four of the values are 2, 6, 8, and
5. Suppose we also know the sample mean is 5. With this knowledge, the fifth value is no longer
independent; it must be 4. Even though all five observations in the sample were independent,
because we know an additional fact about the sample - that is has a mean of 5 - we only have 4
degrees of freedom. In our two sample case, there are as many degrees of freedom as observations,
minus two because we know two sample statistics, the means for each group.

Hypotheses

Recall the hypotheses for our Stack Overflow question about compensation for the two age groups.
Since this is a “greater than” alternative hypothesis, we need a right-tailed test.

Significance level

We’re going to calculate a p-value in a moment, but we first need to decide on a significance level.
There are several possibilities; let’s use point-one. That means that we reject the null hypothesis
in favor of the alternative if the p-value is less-than-or-equal-to point-one.

Calculating p-values: one proportion vs. a value

In Section 0.1.4 , to get the p-value, we transformed the z-score with the normal CDF. Since it was
a right-tailed test, we subtracted the result from one. In the previous video, we used an approx-
imation for the test statistic standard error using sample information. Using this approximation
adds more uncertainty and that’s why this is a t instead of a z problem. The t distribution allows
for more uncertainty when using multiple estimates in a single statistic calculation. Here, the
multiple estimates correspond to the sample mean and the sample standard deviation.

Calculating p-values: two means from different groups

Now we are calculating means rather than proportions, the z-score is replaced with a t test statistic.
This is the value calculated in the previous video. The calculation also needs the degrees of freedom,
which is the total number of observations in both groups, minus two.

To calculate the p-value, we need to transform the test statistic using the t-distribution CDF
instead of the normal distribution CDF. Notice the use of t.cdf instead of norm.cdf, and that
the df argument is set to the degrees of freedom. This p-value is less than the significance level
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of 0.1, so we should reject the null hypothesis in favor of the alternative hypothesis that Stack
Overflow data scientists who started coding as children earn more.

0.2.4 Exercise 2.2.1

From t to p

Previously, you calculated the test statistic for the two-sample problem of whether the mean weight
of shipments is smaller for shipments that weren’t late (late == "No") compared to shipments
that were late (late == "Yes"). In order to make decisions about it, you need to transform the
test statistic with a cumulative distribution function to get a p-value.

Recall the hypotheses:

𝐻𝑜: The mean weight of shipments that weren’t late is the same as the mean weight of shipments
that were late.

𝐻𝐴: The mean weight of shipments that weren’t late is less than the mean weight of shipments
that were late.

Use a significance level of alpha = 0.05.

Instructions

• What type of test does the alternative hypothesis indicate that we need? **Left-tailed
• Calculate the degrees of freedom for the test.
• Compute the p-value using the test statistic, t_stat.
• What decision should you make based on the results of the hypothesis test? **Reject the

null hypothesis.

# Import the necessary libraries
import pandas as pd
import numpy as np
from scipy.stats import t

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

xbar = late_shipments.groupby("late")["weight_kilograms"].mean()
s = late_shipments.groupby("late")["weight_kilograms"].std()
n = late_shipments.groupby("late")["weight_kilograms"].count()

# The mean weight for both category in the 'late' column
xbar_no = xbar.get('No')
xbar_yes = xbar.get('Yes')

# The standard deviation weight for both category in the 'late' column
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s_no = s.get('No')
s_yes = s.get('Yes')

# The sample size for both category in the 'late' column
n_no = n.get('No')
n_yes = n.get('Yes')

# Calculate the numerator of the test statistic
numerator = xbar_no - xbar_yes

# Calculate the denominator of the test statistic
denominator = np.sqrt(s_no ** 2/n_no + s_yes ** 2/n_yes)

# Calculate the test statistic
t_stat = numerator/denominator

# Calculate the degrees of freedom
degrees_of_freedom = n_no + n_yes - 2

# Calculate the p-value from the test stat
p_value = t.cdf(t_stat, df = degrees_of_freedom)

# Print the p_value
print(p_value)

0.008432382146249523

0.2.5 Chapter 2.3: Paired t-tests

Previously, we used the t-distribution to compute a p-value from a standardized test statistic
related to the difference in means across two groups.

US Republican presidents dataset

Here’s a dataset of US presidential elections. Each row represents a presidential election at the
county level. The variables in the dataset are the US state, the county within that state, and the
percentage of votes for the Republican candidate in 2008, and in 2012.

1. 1 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ
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Hypotheses

One question is whether the percentage of votes for the Republican candidate was lower in 2008
compared to 2012. To test this, we form hypotheses. As before, the null hypothesis is that
our hunch is wrong, and that the population parameters are the same in each year group. The
alternative hypothesis is that the parameter in 2008 was lower than in 2012. Let’s set a significance
level of point-zero-five. One feature of this dataset is that the 2008 votes and the 2012 votes are
paired, which means they aren’t independent, since they both refer to the same county. This
means voting patterns may occur due to county-level demographics and local politics, and we
want to capture this pairing in our model.

From two samples to one

For paired analyses, rather than considering the two variables separately, we can consider a single
variable of the difference. This is stored in a DataFrame called sample_data with a column named
diff. In this histogram of the difference, most values are between minus ten and ten, with at
least one outlier.

Calculate sample statistics of the difference

The sample mean, x-bar, is calculated from this difference. It is around minus two-point-eight-
eight.

Revised hypotheses

We can restate the hypotheses in terms of the single population mean, mu-diff, being equal to or
less than zero. The test statistic, t, has a slightly simpler equation compared to the two sample
case. We have one statistic, so the number of degrees of freedom is the number of pairs minus
one.

Calculating the p-value

To calculate the test statistic, we need the number of rows in the dataset, one hundred, and the
standard deviation of the differences. We already calculated x-bar-diff, the mean of the differences,
as minus two-point-eight-eight. Assuming the null hypothesis is true means mu-diff is zero. We
now have everything we need to plug into the equation to calculate t. It’s minus five-point-six.
The degrees of freedom are one less than n-diff at ninety nine. Finally, we transform t with the
t-distribution CDF. The p-value is really small at around nine-point-six times ten to the minus
eight. That means we reject the null hypothesis in favor of the alternative hypothesis that the
Republican candidates got a smaller percentage of the vote in 2008 compared to 2012.
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Testing differences between two means using ttest()

That was a lot of calculating. Fortunately, there’s an easier way. The pingouin package provides a
variety of different methods for hypothesis testing and returns the results as a pandas DataFrame.
Its output can be a little friendlier to work with than similar methods from scipy.stats. One
method from pingouin is ttest and it works with array-like objects, so the first argument is
the Series of differences. For a converted one sample test like this, y specifies the hypothesized
difference value from the null hypothesis, which is zero. The type of alternative hypothesis can
be specified as two-sided, less, or greater, corresponding to two-tailed, left-tailed, and right-tailed
tests, respectively. Here’s the output. We can recognize the value of the test statistic, the degrees of
freedom, the alternative direction, and the p-value. The additional output refers to more advanced
statistical concepts that are outside the scope of this course.

1. 1 Details on Returns from pingouin.ttest() are available in the API docs for pingouin at
https://pingouin-stats.org/generated/pingouin.ttest.html#pingouin.ttest

ttest() with paired=True

There’s a variation of ttest for paired data that requires even less work. Rather than calculating
the difference between the two paired variables, we can just pass them both directly to ttest as
x and y, and set paired to True. Notice that the results in the first four columns are the same as
before.

Unpaired ttest()

If we don’t set paired to True and instead perform an unpaired t-test, then the numbers change.
The test statistic is closer to zero, there are more degrees of freedom, and the p-value is much
larger. Performing an unpaired t-test when our data is paired increases the chances of false negative
errors.

0.2.6 Exercise 2.3.1

Visualizing the difference

Before you start running hypothesis tests, it’s a great idea to perform some exploratory data
analysis; that is, calculating summary statistics and visualizing distributions.

Here, you’ll look at the proportion of county-level votes for the Democratic candidate in 2012 and
2016, sample_dem_data. Since the counties are the same in both years, these samples are paired.
The columns containing the samples are dem_percent_12 and dem_percent_16.
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Instructions

1. Create a new diff column containing the percentage of votes for the democratic candidate
in 2012 minus the percentage of votes for the democratic candidate in 2016.

2. Calculate the mean of the diff column as xbar_diff.
3. Calculate the standard deviation of the diff column as s_diff.
4. Plot a histogram of the diff column with 20 bins.

# Import the necessary libraries
import pandas as pd
import numpy as np
from scipy.stats import t
import matplotlib.pyplot as plt

sample_dem_data = pd.read_feather('datasets/dem_votes_potus_12_16.feather')

# Calculate the differences from 2012 to 2016
sample_dem_data['diff'] = sample_dem_data['dem_percent_12'] - sample_dem_data['dem_percent_16']

# Print sample_dem_data
print(sample_dem_data)

# Find the mean of the diff column
xbar_diff = sample_dem_data['diff'].mean()

# Print xbar_diff
print(xbar_diff)

# Find the standard deviation of the diff column
s_diff = sample_dem_data['diff'].std()

# Print s_diff
print(s_diff)

# Plot a histogram of diff with 20 bins
sample_dem_data['diff'].hist(bins=20)
plt.show()

state county dem_percent_12 dem_percent_16 diff
0 Alabama Bullock 76.305900 74.946921 1.358979
1 Alabama Chilton 19.453671 15.847352 3.606319
2 Alabama Clay 26.673672 18.674517 7.999155
3 Alabama Cullman 14.661752 10.028252 4.633500
4 Alabama Escambia 36.915731 31.020546 5.895185
.. ... ... ... ... ...
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495 Wyoming Uinta 19.065464 14.191263 4.874201
496 Wyoming Washakie 20.131846 13.948610 6.183235
497 Alaska District 3 33.514582 16.301064 17.213518
498 Alaska District 18 61.284271 52.810051 8.474220
499 Alaska District 24 42.913980 39.405286 3.508694

[500 rows x 5 columns]
6.829312660106834
5.040139140132317
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0.2.7 Exercise 2.3.2

Using ttest()

Manually calculating test statistics and transforming them with a CDF to get a p-value is a lot of
effort to compare two sample means. The comparison of two sample means is called a t-test, and
the pingouin Python package has a .ttest() method to accomplish it. This method provides
some flexibility in how you perform the test.

As in the previous exercise, you’ll explore the difference between the proportion of county-level
votes for the Democratic candidate in 2012 and 2016 to identify if the difference is significant. The
hypotheses are as follows:

𝐻𝑜: The proportion of democratic votes in 2012 and 2016 were the same. 𝐻𝐴: The proportion of
democratic votes in 2012 and 2016 were different.

Instructions

1. Conduct a t-test on the sample differences (the diff column of sample_dem_data), using an
appropriate alternative hypothesis chosen from "two-sided", "less", and "greater".
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# Import the necessary libraries
import pandas as pd
import numpy as np
import pingouin

sample_dem_data = pd.read_feather('datasets/dem_votes_potus_12_16.feather')

# Calculate the differences from 2012 to 2016
sample_dem_data['diff'] = sample_dem_data['dem_percent_12'] - sample_dem_data['dem_percent_16']

# Conduct a t-test on diff
test_results = pingouin.ttest(x=sample_dem_data['diff'],
y=0, alternative='two-sided')

# Print the test results
print(test_results)

T dof alternative p-val CI95% cohen-d \
T-test 30.298384 499 two-sided 3.600634e-115 [6.39, 7.27] 1.354985

BF10 power
T-test 2.246e+111 1.0

2. What’s the correct decision from the t-test, assuming 𝛼 = 0.01 ?

Answer

Reject the null hypothesis.

3. Conduct a paired test on the democratic votes in 2012 and 2016 (the dem_percent_12 and
dem_percent_16 columns of sample_dem_data), using an appropriate alternative hypothe-
sis.

# Import the necessary libraries
import pandas as pd
import numpy as np
import pingouin

sample_dem_data = pd.read_feather('datasets/dem_votes_potus_12_16.feather')

# Calculate the differences from 2012 to 2016
sample_dem_data['diff'] = sample_dem_data['dem_percent_12'] - sample_dem_data['dem_percent_16']

# Conduct a paired t-test on dem_percent_12 and dem_percent_16
paired_test_results = pingouin.ttest(x=sample_dem_data['dem_percent_12'],
y=sample_dem_data['dem_percent_16'], paired = True, alternative='two-sided')
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# Print the paired test results
print(paired_test_results)

T dof alternative p-val CI95% cohen-d \
T-test 30.298384 499 two-sided 3.600634e-115 [6.39, 7.27] 0.454202

BF10 power
T-test 2.246e+111 1.0

4. Compare the paired t-test to an (inappropriate) unpaired test on the same data. How does
the p-value change?

pingouin.ttest(x=sample_dem_data['dem_percent_12'],
y=sample_dem_data['dem_percent_16'],
alternative="two-sided")

Answer

The p-value from the unpaired test is greater than than the p-value from the paired test. When you
have paired data, a paired t-test is preferable to the unpaired version because it reduces the chance
of a false negative error.

# Import the necessary libraries
import pandas as pd
import numpy as np
import pingouin

sample_dem_data = pd.read_feather('datasets/dem_votes_potus_12_16.feather')

unpaired_test = pingouin.ttest(x=sample_dem_data['dem_percent_12'],
y=sample_dem_data['dem_percent_16'], paired = False,
alternative="two-sided")

print(unpaired_test)

T dof alternative p-val CI95% cohen-d \
T-test 7.181565 998 two-sided 1.345737e-12 [4.96, 8.7] 0.454202

BF10 power
T-test 4.308e+09 1.0

0.2.8 Chapter 2.4: ANOVA tests

We’ve seen how to compare two groups in the unpaired and paired cases. But what if there are
more than two groups?

28



Job satisfaction: 5 categories

The Stack Overflow survey includes a job satisfaction variable, with five categories from "Very
satisfied" down to "Very dissatisfied".

Visualizing multiple distributions

Suppose we want to know if mean annual compensation is different for each of the levels of job
satisfaction. The first thing to do is visualize the distributions with box plots. Seaborn’s boxplot
method provides a nice option here with converted_comp on the horizontal axis and job_sat on
the vertical axis using the stack_overflow data. “Very satisfied” looks slightly higher than the
others, but to see if they are significantly different, we’ll need to use hypothesis tests.

Analysis of variance (ANOVA)

ANOVA tests determine whether there are differences between the groups. We begin by setting our
significance level to point-two. This value is larger than in many situations but will help us under-
stand the implications on comparing different numbers of groups later on. We use the pingouin
anova method to compare values across multiple groups. We specify the data as stack_overflow,
the dependent variable,dv, as converted_comp, and the column of groups to calculate between as
job_sat. The p-value is stored in the p-unc column, which is point-zero-zero-one-three, which is
smaller than alpha at 20 percent. That means that at least two of the categories of job satisfaction
have significant differences between their compensation levels, but this doesn’t tell us which two
categories they are.

Pairwise tests

To identify which categories are different, we compare all five job satisfaction categories, testing
on each pair in turn. There are ten ways of choosing two items from a set of five, so we have ten
tests to perform. Our significance level is still point-two.

To run all these hypothesis tests in one go, we can use pairwise_tests. The first three arguments
of data, dv, and between are the same as the anova method. We’ll discuss p-adjust shortly. The
result shows a DataFrame where A and B are the two levels being compared on each row. Next,
we look at the p-unc column of p-values. Three of these are less than our significance level of
point-two.

As the number of groups increases…

In this case we have five groups, resulting in ten pairs. As the number of groups increases,
the number of pairs - and hence the number of hypothesis tests we must perform - increases
quadratically. The more tests we run, the higher the chance that at least one of them will give
a false positive significant result. With a significance level of point-two, if we run one test, the
chance of a false positive result is point-two. With five groups and ten tests, the probability of
at least one false positive is around point-seven. With twenty groups, it’s almost guaranteed that
we’ll get at least one false positive.
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Bonferroni correction

The solution to this is to apply an adjustment to increase the p-values, reducing the chance
of getting a false positive. One common adjustment is the Bonferroni correction. Looking at
the p-corr column corresponding to corrected p-values, as opposed to the p-unc column for
uncorrected, only two of the pairs appear to have significant differences.

More methods

pingouin provides several options for adjusting the p-values with some being more conservative
than others. No adjustment with none is the default, but in almost all pairwise t-testing situations
choosing a correction method is more appropriate.

0.2.9 Exercise 2.4.1

Visualizing many categories

So far in this chapter, we’ve only considered the case of differences in a numeric variable between
two categories. Of course, many datasets contain more categories. Before you get to conducting
tests on many categories, it’s often helpful to perform exploratory data analysis (EDA), calculating
summary statistics for each group and visualizing the distributions of the numeric variable for each
category using box plots.

Here, we’ll return to the late shipments data, and how the price of each package (pack_price)
varies between the three shipment modes (shipment_mode): "Air", "Air Charter", and
"Ocean".

Instructions

1. Group late_shipments by shipment_mode and calculate the mean pack_price for each
group, storing the result in xbar_pack_by_mode.

2. Group late_shipments by shipment_mode and calculate the standard deviation pack_price
for each group, storing the result in s_pack_by_mode.

3. Create a boxplot from late_shipments with "pack_price" as x and "shipment_mode" as
y.

# Import the necessary libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Calculate the mean pack_price for each shipment_mode
xbar_pack_by_mode = late_shipments.groupby('shipment_mode')['pack_price'].mean()
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# Print the grouped means
print(xbar_pack_by_mode)

# Calculate the standard deviation of the pack_price for each shipment_mode
s_pack_by_mode = late_shipments.groupby("shipment_mode")['pack_price'].std()

# Print the grouped standard deviations
print(s_pack_by_mode)

# Boxplot of shipment_mode vs. pack_price
sns.boxplot(x="pack_price", y="shipment_mode", data=late_shipments)
plt.show()

shipment_mode
Air 39.712395
Air Charter 4.226667
Ocean 6.432273
Name: pack_price, dtype: float64
shipment_mode
Air 48.932861
Air Charter 0.992969
Ocean 5.303047
Name: pack_price, dtype: float64
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There certainly looks to be a difference in the pack price between each of the three shipment modes.
Do you think the differences are statistically significant?
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0.2.10 Exercise 2.4.2

Conducting an ANOVA test

The box plots made it look like the distribution of pack price was different for each of the three
shipment modes. However, it didn’t tell us whether the mean pack price was different in each
category. To determine that, we can use an ANOVA test. The null and alternative hypotheses
can be written as follows.

𝐻𝑂: Pack prices for every category of shipment mode are the same.

𝐻𝐴: Pack prices for some categories of shipment mode are different.

Use a significance level of 0.1.

Instructions

1. Run an ANOVA on late_shipments investigating 'pack_price' (the dependent variable)
between the groups of 'shipment_mode'

# Import the necessary libraries
import pandas as pd
import pingouin

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Run an ANOVA for pack_price across shipment_mode
anova_results = pingouin.anova(data=late_shipments, dv='pack_price', between = 'shipment_mode')

# Print anova_results
print(anova_results)

Source ddof1 ddof2 F p-unc np2
0 shipment_mode 2 997 21.8646 5.089479e-10 0.042018

2. Assuming a significance level of 0.1, should you reject the null hypothesis that there is no
difference in pack prices between shipment modes?

Yes. The p-value is less than or equal to the significance level, so the null hypothesis should be
rejected. There is a significant difference in pack prices between the shipment modes. However,
we don’t know which shipment modes this applies to.
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0.2.11 Exercise 2.4.3

Pairwise t-tests

The ANOVA test didn’t tell you which categories of shipment mode had significant differences in
pack prices. To pinpoint which categories had differences, you could instead use pairwise t-tests.

Instructions

1. Perform pairwise t-tests on late_shipments’s pack_price variable, grouped by
shipment_mode, without doing any p-value adjustment.

2. Modify the pairwise t-tests to use the Bonferroni p-value adjustment and stored it as
modify_pairwise_results

3. Using the Bonferroni correction results and assuming a significance level of 0.1, for which
pairs of shipment modes should you reject the null hypothesis that the pack prices are equal?

“Ocean” and “Air Charter”; “Ocean” and “Air”; “Air Charter” and “Air”. After applying the
Bonferroni adjustment, the p-values for the t-tests between each of the three groups are all less
than 0.1.

# Import the necessary libraries
import pandas as pd
import pingouin

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Perform a pairwise t-test on pack price, grouped by shipment mode
pairwise_results = pingouin.pairwise_tests(data=late_shipments, dv='pack_price', between = 'shipment_mode', padjust='none')

# Print pairwise_results
print(pairwise_results)

# Modify the pairwise t-tests to use Bonferroni p-value adjustment
modify_pairwise_results = pingouin.pairwise_tests(data=late_shipments,

dv="pack_price",
between="shipment_mode",
padjust="bonf")

# Print pairwise_results
print(modify_pairwise_results)

Contrast A B Paired Parametric T \
0 shipment_mode Air Air Charter False True 21.179625
1 shipment_mode Air Ocean False True 19.335760
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2 shipment_mode Air Charter Ocean False True -3.170654

dof alternative p-unc BF10 hedges
0 600.685682 two-sided 8.748346e-75 5.809e+76 0.726592
1 986.979785 two-sided 6.934555e-71 1.129e+67 0.711119
2 35.615026 two-sided 3.123012e-03 15.277 -0.423775

Contrast A B Paired Parametric T \
0 shipment_mode Air Air Charter False True 21.179625
1 shipment_mode Air Ocean False True 19.335760
2 shipment_mode Air Charter Ocean False True -3.170654

dof alternative p-unc p-corr p-adjust BF10 \
0 600.685682 two-sided 8.748346e-75 2.624504e-74 bonf 5.809e+76
1 986.979785 two-sided 6.934555e-71 2.080367e-70 bonf 1.129e+67
2 35.615026 two-sided 3.123012e-03 9.369037e-03 bonf 15.277

hedges
0 0.726592
1 0.711119
2 -0.423775

0.3 Chapter 3: Proportion Tests

Now it’s time to test for differences in proportions between two groups using proportion tests.
Through hands-on exercises, you’ll extend your proportion tests to more than two groups with
chi-square independence tests, and return to the one sample case with chi-square goodness of fit
tests.

0.3.1 Chapter 3.1: One-sample proportion tests

Let’s return to thinking about testing proportions, as we did in Section 0.1.

Chapter 1 recap

The hypothesis tests in Section 0.1 measured whether or not an unknown population proportion
was equal to some value. We used bootstrapping on the sample to estimate the standard error of
the sample statistic. The standard error was then used to calculate a standardized test statistic,
the z-score, which was used to get a p-value, so we could decide whether or not to reject the null
hypothesis. A bootstrap distribution can be computationally intensive to calculate, so this time
we’ll instead calculate the test statistic without it.
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Standardized test statistic for proportions

An unknown population parameter that is a proportion, or population proportion for short, is
denoted p. The sample proportion is denoted p-hat, and the hypothesized value for the population
proportion is denoted p-zero. As in Section 0.1, the standardized test statistic is a z-score. We
calculate it by starting with the sample statistic, subtracting its mean, then dividing by its standard
error. p-hat minus the mean of p-hat, divided by the standard error of p-hat. Recall from Sampling
in Python that the mean of a sampling distribution of sample means, denoted by p-hat, is p, the
population proportion. Under the null hypothesis, the unknown proportion p is assumed to be
the hypothesized population proportion p-zero. The z-score is now p-hat minus p-zero, divided by
the standard error of p-hat.

Simplifying the standard error calculations

For proportions, under H-naught, the standard error of p-hat equation can be simplified to p-
zero times one minus p-zero, divided by the number of observations, then square-rooted. We can
substitute this into our equation for the z-score. This is easier to calculate because it only uses
p-hat and n, which we get from the sample, and p-zero, which we chose.

Why z instead of t?

We might wonder why we used a z-distribution here, but a t-distribution in Section 0.2. This is
the test statistic equation for the two sample mean case. The standard deviation of the sample,
s, is calculated from the sample mean, x-bar. That means that x-bar is used in the numerator
to estimate the population mean, and in the denominator to estimate the population standard
deviation. This dual usage increases the uncertainty in our estimate of the population parameter.
Since t-distributions are effectively a normal distribution with fatter tails, we can use them to
account for this extra uncertainty. In effect, the t-distribution provides extra caution against
mistakenly rejecting the null hypothesis. For proportions, we only use p-hat in the numerator,
thus avoiding the problem with uncertainty, and a z-distribution is fine.

Stack Overflow age categories

Returning to the Stack Overflow survey, let’s hypothesize that half of the users in the population
are under thirty and check for a difference. Let’s set a significance level of point-zero-one. In the
sample, just over half the users are under thirty.

Variables for z

Let’s get the numbers needed for the z-score. p-hat is the proportion of sample rows where age_cat
equals under thirty. p-zero is point-five according to the null hypothesis. n is the number of rows
in the dataset.
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Calculating the z-score

Inserting the values we calculated into the z-score equation yields a z-score of around three-point-
four.

Calculating the p-value

For left-tailed alternative hypotheses, we transform the z-score into a p-value using norm.cdf.
For right-tailed alternative hypotheses, we subtract the norm.cdf result from one. For two-tailed
alternative hypotheses, we check whether the test statistic lies in either tail, so the p-value is the
sum of these two values: one corresponding to the z-score and the other to its negative on the other
side of the distribution. Since the normal distribution PDF is symmetric, this simplifies to twice
the right-tailed p-value since the z-score is positive. Here, the p-value is less than the significance
level of point-zero-one, so we reject the null hypothesis, concluding that the proportion of users
under thirty is not equal to point-five.

0.3.2 Exercise 3.1.1

Test for single proportions

In Section 0.1, you calculated a p-value for a test hypothesizing that the proportion of late ship-
ments was greater than 6%. In that chapter, you used a bootstrap distribution to estimate the
standard error of the statistic. An alternative is to use an equation for the standard error based
on the sample proportion, hypothesized proportion, and sample size.

𝑧 = 𝑝 − 𝑝0

√𝑝0(1−𝑝0)
𝑛

You’ll revisit the p-value using this simpler calculation.

Instructions

1. Hypothesize that the proportion of late shipments is 6%.

• Calculate the sample proportion of shipments where late equals "Yes".
• Calculate the number of observations in the sample.

2. Calculate the numerator and denominator of the z-score.

• Calculate the z-score as the ratio of these numbers.

3. Transform the z-score into a p-value, remembering that this is a “greater than” alternative
hypothesis.
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# Import the necessary libraries
import pandas as pd
import numpy as np
import pingouin
from scipy.stats import norm

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Hypothesize that the proportion of late shipments is 6%
p_0 = 0.06

# Calculate the sample proportion of late shipments
p_hat = (late_shipments['late'] == 'Yes').mean()

# Calculate the sample size
n = len(late_shipments)

# Print p_hat and n
print(p_hat, n)

# Calculate the numerator and denominator of the test statistic
numerator = p_hat - p_0
denominator = np.sqrt(p_0 * (1-p_0)/n)

# Calculate the test statistic
z_score = numerator/denominator

# Print the result
print(z_score)

# Calculate the p-value from the z-score
p_value = 1 - norm.cdf(z_score)

# Print the p-value
print(p_value)

0.061 1000
0.13315591032282698
0.44703503936503364
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0.3.3 Chapter 3.2: Two-sample proportion tests

Great work so far! In the previous lesson, we tested a single proportion against a specific value.
As with means, we can also test for differences between proportions in two populations.

Comparing two proportions

The Stack Overflow survey contains a hobbyist variable. The value “Yes” means the user described
themselves as a hobbyist and “No” means they described themselves as a professional. We can
hypothesize that the proportion of hobbyist users is the same for the under thirty age category as
the thirty or over category, which is a two-tailed test. More formally, the null hypothesis is that
the difference between the population parameters for each group is zero. Let’s set a significance
level of point-zero-five.

Calculating the z-score

Here is the z-score equation for a proportion test. Let’s break it down. The sample statistic is the
difference in the proportions for each category. That’s the two p-hat values in the numerator. We
subtract the hypothesized value of the population parameter, and assuming the null hypothesis is
true, it’s zero. The denominator is the standard error of the sample statistic. We can again avoid
having to generate a bootstrap distribution to calculate the standard error by using a standard
error equation, which is a slightly more complicated version of the one sample case. Note that
p-hat is a weighted mean of the sample proportions for each category, also is known as a pooled
estimate of the population proportion. p-hat can be calculated using the following equation. This
looks horrendous, but Python is great at handling arithmetic. We now only need four numbers
from the sample dataset to perform these calculations and calculate the z-score: the proportion
of hobbyists in each age group, and the number of observations in each age group.

Getting the numbers for the z-score

To calculate these four numbers, we group by the age category, and calculate the sample propor-
tions using .value_counts, and the row counts using .count. As we’re looking at the proportion
of hobbyists, we’ll only be focusing on rows where hobbyist is Yes.

To isolate the hobbyist proportions from p_hats, we can use pandas’ multiIndex subsetting, pass-
ing a tuple of the outer column and inner column values. This returns a sample proportion of
point-77 for the at least thirty group, and point-84 for the under thirty’s.

The number of observations in each age category can be extracted with simpler pandas subsetting.
There are 1050 rows in the at least thirty group and 1211 for the under 30 group.

After that, we can do the arithmetic using our equations for p_hat, the standard error, and the
z-score to get the test statistic. This returns a z-score of minus four-point-two-two. Luckily, we
can avoid much of this arithmetic.
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Proportion tests using proportions_ztest()

The proportions_ztest function from statsmodels can calculate the z-score more directly. This
function requires two objects as NumPy arrays: the number of hobbyists in each age group, and
the total number of rows in each age group. We can get these numbers by grouping by age_cat,
and calling .value_counts on the hobbyist column, as shown above. The numbers can then
either be read-off or subsetted to create the arrays. Next, we import proportions_ztest from
statsmodels.stats.proportions, and pass the arrays to the count and nobs arguments. Because
we’re testing for a difference, we specify that this is a two-sided test using the alternative argument.
proportions_ztest returns a z-score and a p-value. The p-value is smaller than the five percent
significance level we specified, so we can conclude that there is a difference in the proportion of
hobbyists between the two age groups.

0.3.4 Exercise 3.2.1

Test of two proportions

You may wonder if the amount paid for freight affects whether or not the shipment was late.
Recall that in the late_shipments dataset, whether or not the shipment was late is stored in
the late column. Freight costs are stored in the freight_cost_group column, and the categories
are "expensive" and "reasonable".

The hypotheses to test, with "late" corresponding to the proportion of late shipments for that
group, are

𝐻0 ∶ lateexpensive − latereasonable = 0

𝐻𝐴 ∶ lateexpensive − latereasonable > 0

p_hats contains the estimates of population proportions (sample proportions) for each
freight_cost_group:

freight_cost_group late
expensive Yes 0.079096
reasonable Yes 0.035165
Name: late, dtype: float64

ns contains the sample sizes for these groups:

freight_cost_group
expensive 531
reasonable 455
Name: late, dtype: int64

39



Instructions

1. Calculate the pooled sample proportion, ̂𝑝, from p_hats and ns.

̂𝑝 = 𝑛expensive ⋅ ̂𝑝expensive + 𝑛reasonable ⋅ ̂𝑝reasonable
𝑛expensive + 𝑛reasonable

2. Calculate the standard error of the sample using this equation.

𝑆𝐸( ̂𝑝expensive − ̂𝑝reasonable) = √ ̂𝑝(1 − ̂𝑝)
𝑛expensive

+ ̂𝑝(1 − ̂𝑝)
𝑛reasonable

• Calculate p_hat multiplied by (1 - p_hat).
• Divide p_hat_times_not_p_hat by the number of "reasonable" rows and by the number

of "expensive" rows, and sum those two values.
• Calculate std_error by taking the square root of p_hat_times_not_p_hat_over_ns.

3. Calculate the z-score using the following equation.

𝑧 = ( ̂𝑝expensive − ̂𝑝reasonable)
𝑆𝐸( ̂𝑝expensive − ̂𝑝reasonable)

4. Calculate the p-value from the z-score.

# Import the necessary libraries
import pandas as pd
import numpy as np
import pingouin
from scipy.stats import norm

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# P_hats and ns
p_hats = late_shipments.groupby('freight_cost_groups')['late'].value_counts(normalize=True)

# Convert the resulting Series to a DataFrame for easier manipulation
p_hats = p_hats.reset_index(name='proportion')

# Filter for rows where 'late' is 'Yes'
p_hats = p_hats[p_hats['late'] == 'Yes']

# Calculate the count of each group
ns = late_shipments.groupby('freight_cost_groups')['late'].count()
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# Calculate the pooled estimate of the population proportion
p_hat_expensive = p_hats[p_hats['freight_cost_groups'] == 'expensive']['proportion'].values[0]
p_hat_reasonable = p_hats[p_hats['freight_cost_groups'] == 'reasonable']['proportion'].values[0]

p_hat = (ns['expensive'] * p_hat_expensive + ns['reasonable'] * p_hat_reasonable) / (ns['expensive'] + ns['reasonable'])

# Print the result
print(f"P_hat value: {p_hat}")

# Calculate p_hat one minus p_hat
p_hat_times_not_p_hat = p_hat * (1 - p_hat)

# Divide this by each of the sample sizes and then sum
p_hat_times_not_p_hat_over_ns = (p_hat_times_not_p_hat/ns["expensive"]) + (p_hat_times_not_p_hat/ns["reasonable"])

# Calculate the standard error
std_error = np.sqrt(p_hat_times_not_p_hat_over_ns)

# Print the result
print(f"Standard deviation: {std_error}")

# Calculate the z-score
z_score = (p_hat_expensive - p_hat_reasonable)/std_error

# Print z_score
print(f"Z Score: {z_score}")

# Calculate the p-value from the z-score
p_value = 1 - norm.cdf(z_score)

# Print p_value
print(f"P value: {p_value}")

P_hat value: 0.058823529411764705
Standard deviation: 0.015031300895066685
Z Score: 2.922648567784529
P value: 0.0017353400023595311

This tiny p-value leads us to suspect there is a larger proportion of late shipments for expensive
freight compared to reasonable freight.

0.3.5 Exercise 3.2.2

proportions_ztest() for two samples
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That took a lot of effort to calculate the p-value, so while it is useful to see how the calcula-
tions work, it isn’t practical to do in real-world analyses. For daily usage, it’s better to use the
statsmodels package.

Recall the hypotheses.

𝐻0 ∶ lateexpensive − latereasonable = 0

𝐻𝐴 ∶ lateexpensive − latereasonable > 0

Instructions

1. Get the counts of the late column grouped by freight_cost_groups.
2. Extract the number of "Yes"’s for the two freight_cost_group into a numpy array, spec-

ifying the 'expensive' count and then 'reasonable'.

• Determine the overall number of rows in each freight_cost_group as a numpy array, spec-
ifying the 'expensive' count and then 'reasonable'.

• Run a z-test using proportions_ztest(), specifying alternative as "larger".

# Import the necessary libraries
import pandas as pd
import numpy as np
from statsmodels.stats.proportion import proportions_ztest

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Count the late column values for each freight_cost_group
late_by_freight_cost_group = late_shipments.groupby('freight_cost_groups')['late'].value_counts()

# Print the counts
print(late_by_freight_cost_group)

stat = 2.922648567784529

# Create an array of the "Yes" counts for each freight_cost_group
success_counts = np.array([42, 16])

# Create an array of the total number of rows in each freight_cost_group
n = np.array([489 + 42, 439 + 16])

# Run a z-test on the two proportions
stat, p_value = proportions_ztest(count = success_counts, nobs = n, alternative = "larger")
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# Print the results
print(f"Z_Stat: {stat}, P_value: {p_value}")

freight_cost_groups late
expensive No 489

Yes 42
reasonable No 439

Yes 16
Name: count, dtype: int64
Z_Stat: 2.922648567784529, P_value: 0.001735340002359578

0.3.6 Chapter 3.3: Chi-square test of independence

Just as ANOVA extends t-tests to more than two groups, chi-square tests of independence extend
proportion tests to more than two groups.

Revisiting the proportion test

Here’s the proportions test from the last Section 0.3.3. The test statistic is the z-score of minus
four-point-two-two.

Independence of variables

That proportion test had a positive result. The small p-value suggested that there was evidence
that the hobbyist and age category variables had an association. If the proportion of hobbyists was
the same for each age category, the variables would be considered statistically independent. More
formally, two categorical variables are consider statistically independent when the proportion of
successes in the response variable is the same across all categories of the explanatory variable.

Test for independence of variables

The pingouin package has an indirect way of testing the difference in the proportions from the
previous Section 0.2.5. To the chi2_independence method, we pass stack_overflow as data,
hobbyist as x, and age_cat as y. The correction argument specifies whether or not to apply
Yates’ continuity correction, which is a fudge factor for when the sample size is very small and the
degrees of freedom is one. Since each group has over one hundred observations, we don’t need it
here. The method returns three different pandas DataFrames: the expected counts, the observed
counts, and statistics related to the test. Let’s look at stats and focus on the pearson test row
and the chi2 and pval columns. The p-value is the same as we had with the z-test of around two
in one hundred thousand. The chi2 value is the squared result of our z-score seen in the previous
Section 0.3.3.
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Job satisfaction and age category

Let’s try another example. Recall that the Stack Overflow sample has an age category variable
with two categories and a job satisfaction variable with five categories.

Declaring the hypotheses

We can declare hypotheses to test for independence of these variables. Here, age category is
the response variable, and job satisfaction is the explanatory variable. The null hypothesis is
that independence occurs. Let’s use a significance level of point-one. The test statistic is
denoted chi-square. It quantifies how far away the observed results are from the expected values
if independence was true.

Exploratory visualization: proportional stacked bar plot

Let’s explore the data using a proportional stacked bar plot. We begin by calculating the propor-
tions in each age group. Next, we use the unstack method to convert this table into wide format.
Using the plot method and setting kind to bar and stacked to True produces a proportional stacked
bar plot. If the age category was independent of job satisfaction, the split between the age cate-
gories would be at the same height in each of the five bars. There’s some variation here, but we’ll
need a chi-square independence test to determine whether it’s a significant difference.

Chi-square independence test

Let’s again use the chi-square independence test from pingouin. We have stack_overflow
as the data and job_sat and age_cat as x and y. We leave out a correction here since our
degrees of freedom is four, calculated by subtracting one from each of the variable categories
and multiplying. The p-value is point-two-three, which is above the significance level we set,
so we conclude that age categories are independent of job satisfaction.

Swapping the variables?

Swapping the variables, so age category is the response and job satisfaction is the explanatory
variable, we see that the splits for each bar are in similar places.

chi-square both ways

If we run the chi-square test with the variables swapped, then the results are identical. Because
of this, we phrase our questions as “are variables X and Y independent?”, rather than “is variable
X independent from variable Y?”, since the order doesn’t matter.
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What about direction and tails?

We didn’t worry about tails in this test, and in fact, the chi2_independence method doesn’t have
an alternative argument. This is because the chi-square test statistic is based on the square of
observed and expected counts, and square numbers are non-negative. That means that chi-square
tests tend to be right-tailed tests.

1. 1 Left-tailed chi-square tests are used in statistical forensics to detect if a fit is suspiciously
good because the data was fabricated. Chi-square tests of variance can be two-tailed. These
are niche uses, though.

0.3.7 Exercise 3.3.3

Performing a chi-square test

The chi-square independence test compares proportions of successes of one categorical variable
across the categories of another categorical variable.

Trade deals often use a form of business shorthand in order to specify the exact details of their
contract. These are International Chamber of Commerce (ICC) international commercial terms,
or incoterms for short.

The late_shipments dataset includes a vendor_inco_term that describes the incoterms that
applied to a given shipment. The choices are:

• EXW: “Ex works”. The buyer pays for transportation of the goods.
• CIP: “Carriage and insurance paid to”. The seller pays for freight and insurance until the

goods board a ship.
• DDP: “Delivered duty paid”. The seller pays for transportation of the goods until they reach

a destination port.
• FCA: “Free carrier”. The seller pays for transportation of the goods. Perhaps the incoterms

affect whether or not the freight costs are expensive. Test these hypotheses with a significance
level of 0.01.

𝐻𝑂: vendor_inco_term and freight_cost_group are independent.

𝐻𝐴: vendor_inco_term and freight_cost_group are associated.

Instructions

1. Calculate the proportion of freight_cost_group in late_shipments grouped by
vendor_inco_term.

2. Unstack the .value_counts() result to be in wide format instead of long.
3. Create a proportional stacked bar plot with bars filled based on freight_cost_group across

the levels of vendor_inco_term.
4. Perform a chi-square test of independence on freight_cost_group and vendor_inco_term

in the late_shipments dataset.
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# Import the necessary libraries
import pandas as pd
import numpy as np
import pingouin
import matplotlib.pyplot as plt

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Proportion of freight_cost_group grouped by vendor_inco_term
props = late_shipments.groupby('vendor_inco_term')['freight_cost_groups'].value_counts(normalize=True)

# Convert props to wide format
wide_props = props.unstack()

# Drop 'DDU' row
wide_props = wide_props.drop('DDU', axis=0)

# Print wide_props
print(wide_props)

# Proportional stacked bar plot of freight_cost_group vs. vendor_inco_term
wide_props.plot(kind='bar', stacked=True)
plt.show()

# Determine if freight_cost_group and vendor_inco_term are independent
expected, observed, stats = pingouin.chi2_independence(data= late_shipments ,x= 'freight_cost_groups', y='vendor_inco_term')

# Print results
print(stats[stats['test'] == 'pearson'])

freight_cost_groups expensive reasonable
vendor_inco_term
CIP 0.320000 0.680000
DDP 0.550000 0.450000
EXW 0.583448 0.416552
FCA 0.336364 0.663636
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5. What should you conclude from the hypothesis test?

• Answer: Reject the null hypothesis and conclude that vendor_inco_term and
freight_cost_group are associated.

• The test to compare proportions of successes in a categorical variable across groups of another
categorical variable is called a chi-square test of independence.

0.3.8 Chapter 3.4: Chi-square goodness of fit tests

Last time, we used a chi-square test to compare proportions in two categorical variables. This
time, we’ll use another variant of the chi-square test to compare a single categorical variable to a
hypothesized distribution.

Purple links

The Stack Overflow survey contains a fun question about how users feel when they discover that
they already visited the top resource, also called a purple link, when trying to solve a coding prob-
lem. We can use the .value-counts method to get the counts of each group in the purple_link
column. We also do a little bit of manipulation here to get a nicely structured DataFrame that we
can work with later. First, we rename the leftmost column to be purple_link, assign the counts
to n, and finally sort by purple_link, so the responses are in alphabetical order. There are four
possible answers stored in the purple_link column.
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Declaring the hypotheses

Let’s hypothesize that half of the users in the population would respond “Hello, old friend”, and the
other three responses would get one sixth each. We can create a DataFrame for these hypothesized
results from a dictionary of key-value pairs for each response. We specify the hypotheses as whether
or not the sample matches this hypothesized distribution. The test statistic, chi-squared, measures
how far the observed sample distribution of proportions is from the hypothesized distribution. Let’s
set the significance level of point-zero-one.

Hypothesized counts by category

To visualize the purple_link distribution, it will help to have the hypothesized counts for each
answer, which are calculated by multiplying the hypothesized proportions by the total number of
observations in the sample.

Visualizing counts

Let’s create a visualization to see how well the hypothesized counts appear to model the observed
counts. The natural way to visualize the counts of a categorical variable is with a bar plot.
First, we use plt.bar to plot the observed purple_link counts, setting the horizontal axis to
purple_link and the vertical axis to n. We set the color of the bars and add a label for a legend.
We do the same again for the hypothesized counts, but also add transparency with the alpha
argument. We can see that two of the responses are reasonably well-modeled by the hypothesized
distribution and another two appear quite different, but we’ll need to run a hypothesis test to see
if the difference is statistically significant.

chi-square goodness of fit test

The one-sample chi-square test is called a goodness of fit test, as we’re testing how well our
hypothesized data fits the observed data. To run the test, we use the chisquare method from
scipy.stats. There are two required arguments to chisquare: an array-like object for the observed
counts, f_obs, and one for the expected counts, f_exp. The p-value returned by the function is
very small, much lower than the significance level of point-zero-one, so we conclude that the sample
distribution of proportions is different from the hypothesized distribution.

0.3.9 Exercise 3.4.1

Visualizing goodness of fit

The chi-square goodness of fit test compares proportions of each level of a categorical variable
to hypothesized values. Before running such a test, it can be helpful to visually compare the
distribution in the sample to the hypothesized distribution.

Recall the vendor incoterms in the late_shipments dataset. You hypothesize that the four values
occur with these frequencies in the population of shipments.
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CIP: 0.05 DDP: 0.1 EXW: 0.75 FCA: 0.1

These frequencies are stored in the hypothesized DataFrame.

The incoterm_counts DataFrame stores the .value_counts() of the vendor_inco_term col-
umn.

Instructions

1. Find the total number of rows in late_shipments.
2. Add a column named n to the hypothesized DataFrame that is the hypothesized prop

column times n_total.
3. Create a bar graph of 'n' versus 'vendor_inco_term' for the incoterm_counts data,

specifying a red color.
4. Add blue bars to the plot showing the same results from the hypothesized DataFrame,

specifying an alpha of 0.5.

# Import the necessary libraries
import pandas as pd
import numpy as np
import pingouin
import matplotlib.pyplot as plt

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Find the number of rows in late_shipments
n_total = len(late_shipments)

# Print n_total
print(n_total)

hypothesized = pd.DataFrame({
'vendor_inco_term': ['CIP', 'DDP', 'EXW', 'FCA'],
'prop': [0.05, 0.1, 0.75, 0.1]

})

# Create value counts for vendor_inco_term column
incoterm_counts = late_shipments['vendor_inco_term'].value_counts()\
.rename_axis('vendor_inco_term')\
.reset_index(name = 'n')\
.sort_values('vendor_inco_term')

# Create n column that is prop column * n_total
hypothesized['n'] = hypothesized['prop'] * n_total
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# Print the modified hypothesized DataFrame
print(hypothesized)

# Plot a red bar graph of n vs. vendor_inco_term for incoterm_counts
plt.bar(incoterm_counts['vendor_inco_term'],incoterm_counts['n'], color='red', label="Observed")

# Add a blue bar plot for the hypothesized counts
plt.bar(hypothesized['vendor_inco_term'], hypothesized['n'], color = 'blue', alpha = 0.5,label="Hypothesized")
plt.legend()
plt.show()

1000
vendor_inco_term prop n

0 CIP 0.05 50.0
1 DDP 0.10 100.0
2 EXW 0.75 750.0
3 FCA 0.10 100.0

CIP DDP DDU EXW FCA
0

100
200
300
400
500
600
700 Observed

Hypothesized

0.3.10 Exercise 3.4.2

Performing a goodness of fit test

The bar plot of vendor_inco_term suggests that the distribution across the four categories was
quite close to the hypothesized distribution. You’ll need to perform a chi-square goodness of fit
test to see whether the differences are statistically significant.

Recall the hypotheses for this type of test:

𝐻𝑂: The sample matches with the hypothesized distribution.
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𝐻𝐴: The sample does not match with the hypothesized distribution.

To decide which hypothesis to choose, we’ll set a significance level of 0.1.

Instructions

1. Using the incoterm_counts and hypothesized datasets, perform a chi-square goodness of
fit test on the incoterm counts, n.

# Import the necessary libraries
import pandas as pd
import numpy as np
from scipy.stats import chisquare
import matplotlib.pyplot as plt

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Find the number of rows in late_shipments
n_total = len(late_shipments)

# Hypothesized dataset
hypothesized = pd.DataFrame({

'vendor_inco_term': ['CIP', 'DDP', 'EXW', 'FCA'],
'prop': [0.05, 0.1, 0.75, 0.1]

})

# Create value counts for vendor_inco_term column
incoterm_counts = late_shipments['vendor_inco_term'].value_counts()\
.rename_axis('vendor_inco_term')\
.reset_index(name = 'n')\
.sort_values('vendor_inco_term')

# Filter out 'DDU'
incoterm_counts = incoterm_counts[incoterm_counts['vendor_inco_term'] != 'DDU']

# Create n column that is prop column * n_total
hypothesized['n'] = hypothesized['prop'] * n_total

# Ensure the sums of observed and expected frequencies match
observed_sum = incoterm_counts['n'].sum()
expected_sum = hypothesized['n'].sum()

# Adjust the expected frequencies to match the observed sum
hypothesized['n'] = hypothesized['n'] * (observed_sum / expected_sum)
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# Perform a goodness of fit test on the incoterm counts n
gof_test = chisquare(f_obs= incoterm_counts['n'], f_exp = hypothesized['n'])

# Print gof_test results
print(f"Chi-Square goodness of fit test: {gof_test}")

Chi-Square goodness of fit test: Power_divergenceResult(statistic=2.3633633633633613, pvalue=0.5004909543758689)

2. Question

• What should you conclude from the hypothesis test? Fail to reject the null hypothesis and
conclude that n follows the distribution specified by hypothesized. The test to compare the
proportions of a categorical variable to a hypothesized distribution is called a chi-square
goodness of fit test.

0.4 CHAPTER 4: Non-Parametric Tests

Finally, it’s time to learn about the assumptions made by parametric hypothesis tests, and see
how non-parametric tests can be used when those assumptions aren’t met.

0.4.1 Chapter 4.1: Assumptions in hypothesis testing

Each hypothesis test we’ve seen so far makes assumptions about the data. It’s only when these
assumptions are met that it is appropriate to use that hypothesis test.

Randomness

Whether it uses one or multiple samples, every hypothesis test assumes that each sample is ran-
domly sourced from its population. If we don’t have a random sample, then it won’t be represen-
tative of the population. To check this assumption, we need to know where our data came from.
There are no statistical or coding tests we can perform to check this. If in doubt, ask the people
involved in data collection, or a domain expert that understands the population being sampled.

1. 1 Sampling techniques are discussed in “Sampling in Python”.

Independence of observations

Tests also assume that each observation is independent. There are some special cases like paired
t-tests where dependencies between two samples are allowed, but these change the calculations,
so we need to understand where such dependencies occur. As we saw with the paired t-test, not
accounting for dependencies results in an increased chance of false negative and false positive
errors. Not accounting for dependencies is a difficult problem to diagnose during analysis. Ideally,
it needs to be discussed before data collection.
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Large sample size

Hypothesis tests also assume that our sample is large enough that the Central Limit Theorem
applies, and the sample distribution can be assumed to be normally distributed. Smaller samples
incur greater uncertainty, which may mean that the Central Limit Theorem does not apply and
the sampling distribution might not be normally distributed. The increased uncertainty of a small
sample means we get wider confidence intervals on the parameter we are trying to estimate. If
the Central Limit Theorem does not apply, the calculations on the sample, and any conclusions
drawn from them, could be nonsense, which increases the chance of false negative and false positive
errors. How big our sample needs to be to be “big enough” depends on the test.

Large sample size: t-test

For one sample t-tests, a popular heuristic is that we need at least thirty observations in our
sample. For the two sample case or ANOVA, we need thirty observations from each group. That
means we can’t compensate for one minority group sample by making the majority group bigger.
In the paired case, we need thirty pairs of observations. Sometimes we can get away with less than
30 in each of these tests; the important thing is that the null distribution appears normal. This is
often the case at around 30 and that’s the reason for this somewhat arbitrary threshold.

Large sample size: proportion tests

For one sample proportion tests, the sample is considered big enough if it contains at least ten
successes and ten failures. Notice that if the probability of success is close to zero or close to one,
then we need a bigger sample. In the two sample case, we require ten successes and ten failures
from each sample.

Large sample size: chi-square tests

The chi-square test is slightly more forgiving and only requires five successes and five failures in
each group, rather than ten.

Sanity check

One more check we can perform is to calculate a bootstrap distribution and visualize it with
a histogram. If we don’t see a bell-shaped normal curve, then one of the assumptions hasn’t
been met. In that case, we should revisit the data collection process, and see if any of the three
assumptions of randomness, independence, and sample size do not hold.
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0.4.2 Exercise 4.1.1

Testing sample size

In order to conduct a hypothesis test and be sure that the result is fair, a sample must meet three
requirements: it is a random sample of the population, the observations are independent, and
there are enough observations. Of these, only the last condition is easily testable with code.

The minimum sample size depends on the type of hypothesis tests you want to perform. You’ll
now test some scenarios on the late_shipments dataset.

Note that the .all() method from pandas can be used to check if all elements are true. For
example, given a DataFrame df with numeric entries, you check to see if all its elements are less
than 5, using (df < 5).all().

Instructions

1. Get the count of each value in the freight_cost_group column of late_shipments. Insert a
suitable number to inspect whether the counts are “big enough” for a two sample t-test.

2. Get the count of each value in the late column of late_shipments. Insert a suitable number
to inspect whether the counts are “big enough” for a one sample proportion test.

3. Get the count of each value in the freight_cost_group column of late_shipments grouped
by vendor_inco_term. Insert a suitable number to inspect whether the counts are "big
enough" for a chi-square independence test.

4. Get the count of each value in the shipment_mode column of late_shipments. Insert a
suitable number to inspect whether the counts are “big enough” for an ANOVA test.

# Import the necessary libraries
import pandas as pd
import numpy as np
from scipy.stats import chisquare
import matplotlib.pyplot as plt

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Count the freight_cost_group values
counts_1 = late_shipments['freight_cost_groups'].value_counts()

# Print the result
print(counts_1)

# Inspect whether the counts are big enough
print((counts_1 >= 30).all())

# Count the late values
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counts_2 = late_shipments['late'].value_counts()

# Print the result
print(counts_2)

# Inspect whether the counts are big enough
print((counts_2 >= 10).all())

# Count the values of freight_cost_group grouped by vendor_inco_term
counts_3 = late_shipments.groupby('vendor_inco_term')['freight_cost_groups'].value_counts()\
.drop('DDU')

# Print the result
print(counts_3)

# Inspect whether the counts are big enough
print((counts_3 >= 5).all())

# Count the shipment_mode values
counts_4 = late_shipments['shipment_mode'].value_counts()

# Print the result
print("Count_4:", counts_4)

# Inspect whether the counts are big enough
print((counts_4 >= 30).all())

freight_cost_groups
expensive 531
reasonable 455
Name: count, dtype: int64
True
late
No 939
Yes 61
Name: count, dtype: int64
True
vendor_inco_term freight_cost_groups
CIP reasonable 34

expensive 16
DDP expensive 55

reasonable 45
EXW expensive 423

reasonable 302
FCA reasonable 73
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expensive 37
Name: count, dtype: int64
True
Count_4: shipment_mode
Air 906
Ocean 88
Air Charter 6
Name: count, dtype: int64
False

0.4.3 Chapter 4.2: Non-parametric tests

So what do we do if the assumptions for the hypothesis tests we’ve seen so far aren’t met?

Parametric tests

The tests that we’ve seen so far are known as parametric tests. Tests like the z-test, t-test, and
ANOVA are all based on the assumption that the population is normally distributed. Parametric
tests also require sample sizes that are “big enough” that the Central Limit Theorem applies.

Smaller Republican votes data

Let’s study a case where the sample size requirement isn’t met with a subset of the US Presi-
dential voting results for Republican candidates that we examined in a previous chapter. Here,
repub_votes_small contains only five counties randomly sampled from the larger dataset of 2008
and 2012 county-level returns.

Results with pingouin.ttest()

Let’s try performing a paired t-test on this small sample. Recall that we require 30 pairs to feel
confident in using a t-test, and this sample only contains five. We set a significance level of one
percent and use the ttest method from pingouin to perform the left-tailed paired t-test. The
small p-value indicates we should reject the null hypothesis, leading us to suspect that the 2008
election had a smaller percentage of Republican votes than the 2012 election.

Non-parametric tests

In situations where we aren’t sure about these assumptions, or we are certain that the assump-
tions aren’t met, we can use non-parametric tests. They do not make the normal distribution
assumptions or the sample size conditions that we saw in the previous video. There are many
different ways to perform tests without these parametric assumptions. In this chapter, we’ll focus
on those relating to ranks. Consider the list, x. The first value of x, one, is the smallest value
and the second value, fifteen, is the fifth smallest. These orderings from smallest to largest are
known as the ranks of the elements of x. We can access them with the rankdata method from
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scipy.stats. Let’s now use a non-parametric test to see what kind of results it gives. Remember
that non-parametric tests work better than the parametric alternative in situations where the
sample size is small or the data cannot be assumed to be normally distributed. We will use the
Wilcoxon-signed rank test, which was developed by Frank Wilcoxon in 1945 and was one of the
first non-parametric procedures developed. We’ll go over the inner workings of the test before
implementing it using another pingouin method.

Wilcoxon-signed rank test (Step 1)

The Wilcoxon-signed rank test requires us to calculate the absolute differences in the pairs of data
and then rank them. First, we take the differences in the paired values.

Wilcoxon-signed rank test (Step 2)

Next, we take the absolute value of the differences, using the .abs method, and place them in the
abs_diff column.

Wilcoxon-signed rank test (Step 3)

Then, we rank these absolute differences using the rankdata method from scipy.stats.

Wilcoxon-signed rank test (Step 4)

The last part of our calculation involves calculating a test statistic called W. W uses the signs of
the diff column to split the ranks into two groups: one for rows with negative differences and one
for positive differences. T-minus is defined as the sum of the ranks with negative differences, and
T-plus is the sum of the ranks with positive differences. For this example, all the differences are
negative, so the T-minus value is the sum of the five ranks, and T-plus is zero. The test statistic
W is the smaller of T-minus and T-plus, which in this case, is zero. We can calculate W, and its
corresponding p-value, using a pingouin method instead of manual calculation.

Implementation with pingouin.wilcoxon()

The .wilcoxonmethod from pingouin takes very similar arguments to the .ttestmethod, except
it doesn’t have a paired argument. The function returns a W value of zero - the same as our manual
calculation! This corresponds to a p-value of around three percent, which is over ten times larger
than the p-value from the t-test, so we should feel more confident with this result given the small
sample size. The Wilcoxon test indicates that we do not have evidence that the 2008 Republican
percentages are smaller than the 2012 percentages using this small sample of five rows.
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0.4.4 Exercise 4.2.1

Wilcoxon signed-rank test

You’ll explore the difference between the proportion of county-level votes for the Democratic
candidate in 2012 and 2016 to identify if the difference is significant.

Instructions

1. Conduct a paired t-test on the percentage columns using an appropriate alternative hypoth-
esis.

2. Conduct a Wilcoxon-signed rank test on the same columns.

# Import the necessary libraries
import pandas as pd
import numpy as np
import pingouin

sample_dem_data = pd.read_feather('datasets/dem_votes_potus_12_16.feather')

# Conduct a paired t-test on dem_percent_12 and dem_percent_16
paired_test_results = pingouin.ttest(x= sample_dem_data['dem_percent_12'],
y = sample_dem_data['dem_percent_16'], paired=True)

# Print paired t-test results
print(paired_test_results)

# Conduct a Wilcoxon test on dem_percent_12 and dem_percent_16
wilcoxon_test_results = pingouin.wilcoxon(x= sample_dem_data['dem_percent_12'],
y = sample_dem_data['dem_percent_16'])

# Print Wilcoxon test results
print(wilcoxon_test_results)

T dof alternative p-val CI95% cohen-d \
T-test 30.298384 499 two-sided 3.600634e-115 [6.39, 7.27] 0.454202

BF10 power
T-test 2.246e+111 1.0

W-val alternative p-val RBC CLES
Wilcoxon 2401.0 two-sided 1.780396e-77 0.961661 0.644816
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0.4.5 Chapter 4.3: Non-parametric ANOVA and unpaired t-tests

In the previous chapter Section 0.4.3, we explored some non-parametric techniques and how they
compare to their parametric counterparts. We’ll continue on that theme here focusing on non-
parametric alternatives to tests of independent numeric samples.

Wilcoxon-Mann-Whitney test

We can avoid assumptions about normally distributed data by performing hypothesis tests on the
ranks of a numeric input. The Wilcoxon-Mann-Whitney test is, very roughly speaking, a t-test
on ranked data. This test is similar to the Wilcoxon test we saw in the last video, but works on
unpaired data instead.

Wilcoxon-Mann-Whitney test setup

Let’s return to the StackOverflow survey and the relationship between converted compensation
and the age respondents began coding. We start by focusing on just those two columns in a new
DataFrame called age_vs_comp. To conduct a Wilcoxon-Mann-Whitney test with pingouin, we
first need to convert our data from long to wide format. This is accomplished with the pivot
method from pandas, which unlike pivot_table, does not aggregate; instead, it returns the raw
values for each group across the rows. We now have our data in two columns named adult and
child with the values corresponding to the converted_comp entries for each row. An adult value
of NaN corresponds to a child entry and a child value of NaN corresponds to an adult entry.

Wilcoxon-Mann-Whitney test

Let’s set a significance level of one percent. We can run a Wilcoxon-Mann-Whitney test using mwu
from pingouin. It accepts x and y arguments corresponding to the two columns of numbers we
want to compare, in this case, child and adult. alternative sets the type of alternative hypothesis,
in this case, that those who code first as children have a higher income than those who code first
as adults, which is a right-tailed test. Here, the p-value is shown as around ten to the negative
nineteenth power, which is significantly smaller than the significance level.

Kruskal-Wallis test

In the same way that ANOVA extends t-tests to more than two groups, the Kruskal-Wallis test
extends the Wilcoxon-Mann-Whitney test to more than two groups. That is, the Kruskal-Wallis
test is a non-parametric version of ANOVA. We use the Kruskal method from pingouin to
perform a Kruskal-Wallis test to investigate if there is a difference in converted_comp between
job satisfaction groups. Unlike the Wilcoxon-Mann-Whitney test, we don’t need to pivot our
data here since the Kruskal method works on long data. We pass in stack_overflow as data,
the dependent variable, dv, as converted_comp, and we are comparing between the groups of
job_sat. Again, the p-value here is very small and smaller than our significance level. This
provides evidence that at least one of the mean compensation totals is different than the others
across these five job satisfaction groups.

59



0.4.6 Exercise 4.3.1

Wilcoxon-Mann-Whitney

Another class of non-parametric hypothesis tests are called rank sum tests. Ranks are the positions
of numeric values from smallest to largest. Think of them as positions in running events: whoever
has the fastest (smallest) time is rank 1, second fastest is rank 2, and so on.

By calculating on the ranks of data instead of the actual values, you can avoid making assumptions
about the distribution of the test statistic. It’s more robust in the same way that a median is
more robust than a mean.

One common rank-based test is the Wilcoxon-Mann-Whitney test, which is like a non-parametric
t-test.

Instructions

• Select weight_kilograms and late from late_shipments, assigning the name weight_vs_late.
• Convert weight_vs_late from long-to-wide format, setting columns to 'late'.
• Run a Wilcoxon-Mann-Whitney test for a difference in weight_kilograms when the ship-

ment was late and on-time.

# Import the necessary libraries
import pandas as pd
import numpy as np
import pingouin

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Select the weight_kilograms and late columns
weight_vs_late = late_shipments[['weight_kilograms', 'late']]

# Convert weight_vs_late into wide format
weight_vs_late_wide = weight_vs_late.pivot(columns='late',

values='weight_kilograms')

# Run a two-sided Wilcoxon-Mann-Whitney test on weight_kilograms vs. late
wmw_test = pingouin.mwu(x=weight_vs_late_wide['No'],
y= weight_vs_late_wide['Yes'])

# Print the test results
print(wmw_test)

U-val alternative p-val RBC CLES
MWU 19134.0 two-sided 0.000014 -0.331902 0.334049
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0.4.7 Exercise 4.3.2

Kruskal-Wallis

Recall that the Kruskal-Wallis test is a non-parametric version of an ANOVA test, comparing the
means across multiple groups.

Instructions

• Run a Kruskal-Wallis test on weight_kilograms between the different shipment modes in
late_shipments.

# Import the necessary libraries
import pandas as pd
import numpy as np
import pingouin

# Import the course dataset
late_shipments = pd.read_feather('datasets/late_shipments.feather')

# Run a Kruskal-Wallis test on weight_kilograms vs. shipment_mode
kw_test = pingouin.kruskal(data=late_shipments, dv='weight_kilograms',
between= 'shipment_mode')

# Print the results
print(kw_test)

Source ddof1 H p-unc
Kruskal shipment_mode 2 125.096618 6.848799e-28

Conclusion

The Kruskal-Wallis test yielded a very small p-value, so there is evidence that at least one of the
three groups of shipment mode has a different weight distribution than the others. Th Kruskal-
Wallis test is comparable to an ANOVA, which tests for a difference in means across multiple
groups.

0.5 Reference

Hypothesis Testing in Python Course for Associate Data Scientist in Python Carrer Track in
DataCamp Inc by James Chapman.
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