CUSTOMER ANALYTICS: PREPARING DATA FOR MODELLING
Omotola Ayodele Lawal
2024-09-16
Table of contents

Project Overview
Task
Data Source
Tools
Steps/Explanations
Data Analysis
Results
Recommendations
Limitations
References
Project Overview
[image: hr-image-small.png]
Two data scientists working on a dashboard.
A common problem when creating models to generate business value from data is that the datasets can be so large that it can take days for the model to generate predictions. Ensuring that your dataset is stored as efficiently as possible is crucial for allowing these models to run on a more reasonable timescale without having to reduce the size of the dataset.
You’ve been hired by a major online data science training provider called Training Data Ltd. to clean up one of their largest customer datasets. This dataset will eventually be used to predict whether their students are looking for a new job or not, information that they will then use to direct them to prospective recruiters.
You’ve been given access to customer_train.csv, which is a subset of their entire customer dataset, so you can create a proof-of-concept of a much more efficient storage solution. The dataset contains anonymized student information, and whether they were looking for a new job or not during training:
	Column
	Description

	student_id
	A unique ID for each student.

	city
	A code for the city the student lives in.

	city_development_index
	A scaled development index for the city.

	gender
	The student’s gender.

	relevant_experience
	An indicator of the student’s work relevant experience.

	enrolled_university
	The type of university course enrolled in (if any).

	education_level
	The student’s education level.

	major_discipline
	The educational discipline of the student.

	experience
	The student’s total work experience (in years).

	company_size
	The number of employees at the student’s current employer.

	company_type
	The type of company employing the student.

	last_new_job
	The number of years between the student’s current and previous jobs.

	training_hours
	The number of hours of training completed.

	job_change
	An indicator of whether the student is looking for a new job (1) or not (0).

Task
The Head Data Scientist at Training Data Ltd. has asked you to create a DataFrame called ds_jobs_transformed that stores the data in customer_train.csv much more efficiently. Specifically, they have set the following requirements:
· Columns containing categories with only two factors must be stored as Booleans (bool).
· Columns containing integers only must be stored as 32-bit integers (int32).
· Columns containing floats must be stored as 16-bit floats (float16).
· Columns containing nominal categorical data must be stored as the category data type.
· Columns containing ordinal categorical data must be stored as ordered categories, and not mapped to numerical values, with an order that reflects the natural order of the column.
· The DataFrame should be filtered to only contain students with 10 or more years of experience at companies with at least 1000 employees, as their recruiter base is suited to more experienced professionals at enterprise companies.
	[image: C:\Users\Hon.Olayinka\AppData\Local\Programs\Quarto\share\formats\docx\tip.png] Important

	If you call .info() or .memory_usage() methods on ds_jobs and ds_jobs_transformed after you’ve preprocessed it, you should notice a substantial decrease in memory usage.

Data Source
Data: The primary data used for this analysis is the customer_train.csv, which is a subset of the entire customer dataset
Tools
Jupyter lab
Steps/Explanations
· The necessary library was imported, which is Pandas
· The Original dataset was loaded, named ds_jobs and a copy was made, called ds_jobs_transformed
· Exploratory Data Analysis was performed which help identify ordinal, nominal, and two-factor categories. This was done by written codes, which iterate over all columns of the DataFrame ds_jobs that have a data type of object (typically representing strings or categorical data) and print the value counts of each column.
· A dictionary of columns containing ordered categorical data was created. The code defines the dictionary called ordered_cats, which contains lists of ordered categories for various features. These features represent specific categorical data in a dataset (e.g., levels of education, size of the company, work experience, etc.). This dictionary can later be used to create ordered categorical columns, for example, when transforming or encoding data in a pandas DataFrame.
· A mapping dictionary of columns containing two-factor categories to convert to Booleans was created. The code defines a Python dictionary called two_factor_cats. This dictionary is used to map certain categorical values into Boolean (True or False) values.
· This for col in ds_jobs_transformed: code iterates through each column in the ds_jobs_transformed DataFrame, performing different transformations based on the column name.
· For the columns 'relevant_experience' and 'job_change', if col in ['relevant_experience', 'job_change']: code uses the two_factor_cats dictionary to convert their categorical values into boolean values (True/False).
· The .map() function applies the mapping from two_factor_cats (defined previously) to the column. For example:
· 'No relevant experience' becomes False.
· 'Has relevant experience' becomes True.
· 0.0 becomes False.
· 1.0 becomes True.
· For the columns 'student_id' and 'training_hours', elif col in ['student_id', 'training_hours']: code changes their data types to int32 using .astype('int32'). This helps reduce memory usage, especially if the original data type was int64. The smaller int32 uses less memory and is sufficient for storing integers that fit within the 32-bit range.
· The column 'city_development_index' is converted to float16 (16-bit floating-point format) by the following code:
elif col in ['student_id', 'training_hours']:
 ds_jobs_transformed[col] = ds_jobs_transformed[col].astype('int32')
· float16 consumes less memory than the default float64.
· It’s useful for reducing the memory footprint of large datasets when the precision provided by float16 is sufficient.
· For columns that are in the ordered_cats dictionary created earlier, the code below converts them to ordered categorical data types.
elif col in ordered_cats.keys():
 category = pd.CategoricalDtype(ordered_cats[col], ordered=True)
 ds_jobs_transformed[col] = ds_jobs_transformed[col].astype(category)
· ordered_cats is a dictionary that contains the order of categories for certain columns.
· pd.CategoricalDtype creates a categorical data type with a specific order, which is useful when the categories have a meaningful order (e.g., educational levels or experience).
· ordered=True ensures that the categories are treated as ordered (e.g., “Primary School” < “High School” < “Graduate”).
· The .astype(category) applies this conversion.
· For all remaining columns (those not handled in the previous conditions), the code below converts them to the standard categorical data type without an explicit order.
else:
 ds_jobs_transformed[col] = ds_jobs_transformed[col].astype('category')
· Converting to category reduces memory usage, especially when the column has a limited number of distinct values (e.g., city names, job roles, etc.).
· The final DataFrame was filtered to only contain students with 10 or more years of experience at companies with at least 1000 employees, as their recruiter base is suited to more experienced professionals at enterprise companies.
Import necessary libraries
import pandas as pd

Load the dataset
ds_jobs = pd.read_csv("customer_train.csv")

View the dataset
ds_jobs.head()

ds_jobs.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19158 entries, 0 to 19157
Data columns (total 14 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 student_id 19158 non-null int64
 1 city 19158 non-null object
 2 city_development_index 19158 non-null float64
 3 gender 14650 non-null object
 4 relevant_experience 19158 non-null object
 5 enrolled_university 18772 non-null object
 6 education_level 18698 non-null object
 7 major_discipline 16345 non-null object
 8 experience 19093 non-null object
 9 company_size 13220 non-null object
 10 company_type 13018 non-null object
 11 last_new_job 18735 non-null object
 12 training_hours 19158 non-null int64
 13 job_change 19158 non-null float64
dtypes: float64(2), int64(2), object(10)
memory usage: 2.0+ MB
Data Analysis
Include below are the codes used to achieve the task given
Import necessary libraries
import pandas as pd

Load the dataset and create a copy
ds_jobs = pd.read_csv("customer_train.csv")
ds_jobs_transformed = ds_jobs.copy()

EDA to help identify ordinal, nominal, and two-factor categories
for col in ds_jobs.select_dtypes("object").columns:
 print(ds_jobs_transformed[col].value_counts(), '\n')

Create a dictionary of columns containing ordered categorical data
ordered_cats = {
 'enrolled_university': ['no_enrollment', 'Part time course', 'Full time course'],
 'education_level': ['Primary School', 'High School', 'Graduate', 'Masters', 'Phd'],
 'experience': ['<1'] + list(map(str, range(1, 21))) + ['>20'],
 'company_size': ['<10', '10-49', '50-99', '100-499', '500-999', '1000-4999', '5000-9999', '10000+'],
 'last_new_job': ['never', '1', '2', '3', '4', '>4']
}

Create a mapping dictionary of columns containing two-factor categories to convert to Booleans
two_factor_cats = {
 'relevant_experience': {'No relevant experience': False, 'Has relevant experience': True},
 'job_change': {0.0: False, 1.0: True}
}

Loop through DataFrame columns to efficiently change data types
for col in ds_jobs_transformed:

 # Convert two-factor categories to bool
 if col in ['relevant_experience', 'job_change']:
 ds_jobs_transformed[col] = ds_jobs_transformed[col].map(two_factor_cats[col])

 # Convert integer columns to int32
 elif col in ['student_id', 'training_hours']:
 ds_jobs_transformed[col] = ds_jobs_transformed[col].astype('int32')

 # Convert float columns to float16
 elif col == 'city_development_index':
 ds_jobs_transformed[col] = ds_jobs_transformed[col].astype('float16')

 # Convert columns containing ordered categorical data to ordered categories using dict
 elif col in ordered_cats.keys():
 category = pd.CategoricalDtype(ordered_cats[col], ordered=True)
 ds_jobs_transformed[col] = ds_jobs_transformed[col].astype(category)

 # Convert remaining columns to standard categories
 else:
 ds_jobs_transformed[col] = ds_jobs_transformed[col].astype('category')

Filter students with 10 or more years experience at companies with at least 1000 employees
ds_jobs_transformed = ds_jobs_transformed[(ds_jobs_transformed['experience'] >= '10') & (ds_jobs_transformed['company_size'] >= '1000-4999')]

ds_jobs_transformed.info()
city
city_103 4355
city_21 2702
city_16 1533
city_114 1336
city_160 845
 ...
city_129 3
city_111 3
city_121 3
city_140 1
city_171 1
Name: count, Length: 123, dtype: int64

gender
Male 13221
Female 1238
Other 191
Name: count, dtype: int64

relevant_experience
Has relevant experience 13792
No relevant experience 5366
Name: count, dtype: int64

enrolled_university
no_enrollment 13817
Full time course 3757
Part time course 1198
Name: count, dtype: int64

education_level
Graduate 11598
Masters 4361
High School 2017
Phd 414
Primary School 308
Name: count, dtype: int64

major_discipline
STEM 14492
Humanities 669
Other 381
Business Degree 327
Arts 253
No Major 223
Name: count, dtype: int64

experience
>20 3286
5 1430
4 1403
3 1354
6 1216
2 1127
7 1028
10 985
9 980
8 802
15 686
11 664
14 586
1 549
<1 522
16 508
12 494
13 399
17 342
19 304
18 280
20 148
Name: count, dtype: int64

company_size
50-99 3083
100-499 2571
10000+ 2019
10-49 1471
1000-4999 1328
<10 1308
500-999 877
5000-9999 563
Name: count, dtype: int64

company_type
Pvt Ltd 9817
Funded Startup 1001
Public Sector 955
Early Stage Startup 603
NGO 521
Other 121
Name: count, dtype: int64

last_new_job
1 8040
>4 3290
2 2900
never 2452
4 1029
3 1024
Name: count, dtype: int64

<class 'pandas.core.frame.DataFrame'>
Index: 2201 entries, 9 to 19143
Data columns (total 14 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 student_id 2201 non-null int32
 1 city 2201 non-null category
 2 city_development_index 2201 non-null float16
 3 gender 1821 non-null category
 4 relevant_experience 2201 non-null bool
 5 enrolled_university 2185 non-null category
 6 education_level 2184 non-null category
 7 major_discipline 2097 non-null category
 8 experience 2201 non-null category
 9 company_size 2201 non-null category
 10 company_type 2144 non-null category
 11 last_new_job 2184 non-null category
 12 training_hours 2201 non-null int32
 13 job_change 2201 non-null bool
dtypes: bool(2), category(9), float16(1), int32(2)
memory usage: 69.5 KB
Results
There was a marked reduction in the size of the ds_jobs_transformed DataFrame from 2.0+ MB to 69.5 KB, which help to save memory and prepare the data for predictive modelling.
Recommendations
None
Limitations
None
References
1. Filtering DataFrames in Intermediate Python Course for Associate Data Scientist in Python Carrer Track in DataCamp Inc by Hugo Bowne-Henderson.
1. For loop in Intermediate Python Course for Associate Data Scientist in Python Carrer Track in DataCamp Inc by Hugo Bowne-Henderson.
1. Python For Data Analysis 3E (Online) by Wes Mckinney Click here to preview
1. Working with Categorical Data in Python in Intermediate Python Course for Associate Data Scientist in Python Carrer Track in DataCamp Inc by Kasey Jones.
rId30.png

rId34.png

