
Project 7 | Modeling Car Insurance Claims
Outcome

Lawal’s Project

2024-11-23

Table of contents

1 Project Overview 2

2 Task 3

3 Data Source 3

4 Tools 4

5 Methodology: Steps/Explanations 4
5.0.1 The necessary libraries were imported, which include Pandas and logit

from statsmodels.formula.api . . . . . . . . . . . . . . . . . . . . . . . . 4
5.0.2 Reading in and exploring the dataset, including the imputation of missing

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5.0.3 Finding the best performing model, with the highest accuracy. . . . . . . . 6

6 Data Analysis 7

7 Result/Findings 14

8 Recommendations 14

9 Limitations 14

10 Conclusion 14

1



11 References 15

Figure 1: car

1 Project Overview

Insurance companies invest a lot of time and money into optimizing their pricing and accurately
estimating the likelihood that customers will make a claim. In many countries insurance it is a
legal requirement to have car insurance in order to drive a vehicle on public roads, so the market
is very large!

Knowing all of this, On the Road car insurance have requested your services in building a model
to predict whether a customer will make a claim on their insurance during the policy period. As
they have very little expertise and infrastructure for deploying and monitoring machine learning
models, they’ve asked you to identify the single feature that results in the best performing model,
as measured by accuracy, so they can start with a simple model in production.

They have supplied you with their customer data as a csv file called car_insurance.csv, along
with a table detailing the column names and descriptions below.
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Table 1: Customer data

Column Description
id Unique client identifier
age Client’s age:
gender Client’s gender:
driving_experience Years the client has been driving:
education Client’s level of education:
income Client’s income level:
credit_score Client’s credit score (between zero and one)
vehicle_ownership Client’s vehicle ownership status:
vehcile_year Year of vehicle registration:
married Client’s marital status:
children Client’s number of children
postal_code Client’s postal code
annual_mileage Number of miles driven by the client each year
vehicle_type Type of car:
speeding_violations Total number of speeding violations received by the client
duis Number of times the client has been caught driving under

the influence of alcohol
past_accidents Total number of previous accidents the client has been

involved in
outcome Whether the client made a claim on their car insurance

(response variable):

2 Task

• Identify the single feature of the data that is the best predictor of whether a customer will
put in a claim (the "outcome" column), excluding the "id" column.

• Store as a DataFrame called best_feature_df, containing columns named "best_feature"
and "best_accuracy" with the name of the feature with the highest accuracy, and the
respective accuracy score.

3 Data Source

Data: The primary data used for this analysis is the car_insurance.csv, which can be downloaded
here. See Table 1 for the column names and descriptions.
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4 Tools

This project was conducted using JupyterLab, a versatile interactive development environment
that facilitates data analysis, visualization, and documentation in Python.

5 Methodology: Steps/Explanations

5.0.1 The necessary libraries were imported, which include Pandas and logit from
statsmodels.formula.api

5.0.2 Reading in and exploring the dataset, including the imputation of missing values

• The Original dataset was loaded, named car.
• The first function, explore, was designed to help analyze and clean a dataset by providing a

detailed overview of its structure and content, and it also optionally imputes missing values.
Here’s a step-by-step explanation:

1. Function creation and its arguments: data, the DataFrame to analyze; head_rows, the
number of rows to display from the start of the DataFrame (default: 5); group_by_col, the
column used to group data for imputing missing values (default: None); cols_to_impute,
the list of columns where missing values will be filled with the group mean (default: None).

def explore(data, head_rows=5, group_by_col=None, cols_to_impute=None):

2. Function Task 1: Prints information about the DataFrame, such as:

• Number of rows and columns.
• Data types of each column.
• Non-null counts for each column.

print("\n--- DataFrame Info ---\n")
data.info()

3. Function Task 2: Displays summary statistics for all columns, including:

• For numerical data: Mean, standard deviation, min, max, and percentiles.
• For categorical data: Frequency counts (mode) and unique counts.

print("\n--- Summary Statistics ---\n")
print(data.describe(include='all'))

3. Function Task 3: Displays the first head_rows rows (default: 5) of the DataFrame to give
a preview of the data.
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print(f"\n--- First {head_rows} Rows ---\n")
print(data.head(head_rows))

4. Function Task 4: Iterates over each column and prints the unique values present in it.
Helps understand the distinct data points for each column.

print("\n--- Unique Values ---\n")
for col in data.columns:

print(f"{col}: {data[col].unique()}")

5. Function Task 5: Fills missing values (NaN) in the specified columns (cols_to_impute)
by grouping data based on group_by_col and calculating the mean for each group.

• Steps:

– Groups the data by the column specified in group_by_col.
– Calculates the mean for the columns listed in cols_to_impute for each group.
– Fills missing values in each column by mapping the group means to the corresponding

rows.

• Error Handling:

– Ensures the function doesn’t crash if the specified column is not found or if an error
occurs during imputation.

if group_by_col and cols_to_impute:
print("\n--- Imputing Missing Values ---\n")
try:

group_means = data.groupby(group_by_col)[cols_to_impute].mean().to_dict()
for col in cols_to_impute:

if col in data.columns:
print(f"Imputing missing values in '{col}' based on group means of '{group_by_col}'")
data[col] = data[col].fillna(data[group_by_col].map(group_means[col]))

else:
print(f"Column '{col}' not found in the dataset.")

except Exception as e:
print(f"Error while imputing missing values: {e}")

6. Function Task 6: After the imputation, checks and prints the count of missing values in
each column to verify if gaps were successfully filled.

print("\n--- Any missing values again ? ---\n")
print(data.isna().sum())
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5.0.3 Finding the best performing model, with the highest accuracy.

• The second function, best_logmodel, was designed to identify the single best feature in a
dataset for predicting a binary outcome using logistic regression with the statsmodels library.
Here’s a detailed explanation:

1. Function creation and its arguments: data, the input dataset for modeling as a pandas
DataFrame; outcome_column, the target column (dependent variable) representing the out-
come being predicted (default: ‘outcome’); id_column, a unique identifier column to exclude
from the analysis (default: ‘id’).

def best_logmodel(data, outcome_column='outcome', id_column='id'):

2. Function Task: Creates a new DataFrame (data1) by removing the id_column (not pre-
dictive) and the outcome_column (target variable) from the list of features. The remaining
columns are treated as potential predictors.

data1 = data.drop(columns=[id_column, outcome_column])

3. Initialize Tracking Variables: best_feature, placeholder for the name of the feature
with the highest accuracy and best_accuracy, tracks the best accuracy score encountered
during the iteration.

best_feature = None
best_accuracy = 0

4. Loop Through Each Feature: Iterates through all the columns (features) in data1 to
evaluate their predictive power for the outcome_column.

for col in data1.columns:

5. Create the Logistic Regression Formula: Constructs a formula for logistic regression
in the form "outcome_column ~ feature_column".

formula = f"{outcome_column} ~ {col}"

6. Fit Logistic Regression Model: Fits a logistic regression model for the current feature
using the logit function from statsmodels. The ‘disp=False argument suppresses output
during model fitting.

model = logit(formula=formula, data=data).fit(disp=False)

7. Generate Confusion Matrix: Produces a confusion matrix for the logistic regression
model’s predictions.

confusion_matrix = model.pred_table()

• Confusion Matrix Layout:
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[[TN, FP], # TN = True Negatives, FP = False Positives
[FN, TP]] # FN = False Negatives, TP = True Positives

8. Calculates the model’s accuracy from the confusion matrix:

• TP: True Positives (correctly predicted positives).
• TN: True Negatives (correctly predicted negatives).
• T: Total number of predictions.
• Accuracy Formula:

Accuracy = TP + TN
Total Predictions

9. Update the Best Feature: Compares the current feature’s accuracy with the best accu-
racy seen so far. If the current feature has a higher accuracy, update best_feature and
best_accuracy.

if accuracy > best_accuracy:
best_feature = col
best_accuracy = accuracy

10. Store Results in a DataFrame: Summarizes the results into a pandas DataFrame with:

• best_feature: The name of the feature with the highest accuracy.
• best_accuracy: The corresponding accuracy score.

best_feature_df = pd.DataFrame({
"best_feature": [best_feature],
"best_accuracy": [best_accuracy]

})

11. Return the Results: Returns the DataFrame so that the results can be used or displayed.

return best_feature_df

6 Data Analysis

# Import required modules
import pandas as pd
from statsmodels.formula.api import logit

# Import the car_insurance csv file and store as object 'car'
car = pd.read_csv("car_insurance.csv")

# Exploring the DataFrame by creating the function 'explore'
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def explore(data, head_rows=5, group_by_col=None, cols_to_impute=None):
"""
Explores the given DataFrame by displaying basic information, summary statistics,
the first few rows, unique values, and imputes missing values with group means if specified.

Parameters:
data (pd.DataFrame): The DataFrame to explore.
head_rows (int): Number of rows to display for the head of the DataFrame. Default is 5.
group_by_col (str): Column name to group by for imputing missing values. Default is None.
cols_to_impute (list): List of column names to impute missing values. Default is None.

"""
print("\n--- DataFrame Info ---\n")
data.info()

print("\n--- Summary Statistics ---\n")
print(data.describe(include='all')) # Include all data types in describe()

print(f"\n--- First {head_rows} Rows ---\n")
print(data.head(head_rows))

print("\n--- Unique Values ---\n")
for col in data.columns:

print(f"{col}: {data[col].unique()}")

# Impute missing values if group_by_col and cols_to_impute are specified
if group_by_col and cols_to_impute:

print("\n--- Imputing Missing Values ---\n")
try:

group_means = data.groupby(group_by_col)[cols_to_impute].mean().to_dict() # Group means as a dictionary
for col in cols_to_impute:

if col in data.columns:
print(f"Imputing missing values in '{col}' based on group means of '{group_by_col}'")
data[col] = data[col].fillna(data[group_by_col].map(group_means[col]))

else:
print(f"Column '{col}' not found in the dataset.")

except Exception as e:
print(f"Error while imputing missing values: {e}")

print("\n--- Any missing values again ? ---\n")
print(data.isna().sum())

# Example usage
# explore(your_data, group_by_col="outcome", cols_to_impute=["credit_score", "annual_mileage"])
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# Use 'explore' function to analyze and clean the car dataset by providing a detailed overview of its structure and content, and it also optionally imputes missing values.

explore(car, group_by_col="outcome", cols_to_impute=["credit_score", "annual_mileage"])

# Create a function, 'best_logmodel', to identify the single best feature in the dataset for predicting a binary outcome using logistic regression with the statsmodels

def best_logmodel(data, outcome_column='outcome', id_column='id'):
"""
Identifies the single best feature for predicting the outcome column using logistic regression
with statsmodels. Calculates accuracy directly from the confusion matrix.

Parameters:
data (pd.DataFrame): The dataset containing features and the outcome column.
outcome_column (str): The name of the target column.
id_column (str): The name of the column to exclude from analysis.

Returns:
pd.DataFrame: A DataFrame with the best feature and its accuracy score.

"""
# Exclude ID and outcome columns from columns set
data1 = data.drop(columns=[id_column, outcome_column])

best_feature = None
best_accuracy = 0

# Iterate through each columns
for col in data1.columns:

# Create formula for logistic regression
formula = f"{outcome_column} ~ {col}"

# Fit logistic regression model on the entire dataset
model = logit(formula=formula, data=data).fit(disp=False)

# Generate confusion matrix using pred_table()
confusion_matrix = model.pred_table()

# Calculate accuracy from confusion matrix
TP = confusion_matrix[1, 1]
TN = confusion_matrix[0, 0]
T = confusion_matrix.sum()
accuracy = (TP + TN) / T

# Update the best feature if this one is better
if accuracy > best_accuracy:

best_feature = col
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best_accuracy = accuracy

# Store results in a DataFrame
best_feature_df = pd.DataFrame({

"best_feature": [best_feature],
"best_accuracy": [best_accuracy]

})

return best_feature_df

# Example usage
# best_feature_df = best_logmodel(your_data)
# print(best_feature_df)

# Use the function, 'best_logmodel', to identify the single best feature in the dataset for predicting a binary outcome using logistic regression with the statsmodels.

best_feature_df = best_logmodel(car)

print(best_feature_df)

--- DataFrame Info ---

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 18 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 id 10000 non-null int64
1 age 10000 non-null int64
2 gender 10000 non-null int64
3 driving_experience 10000 non-null object
4 education 10000 non-null object
5 income 10000 non-null object
6 credit_score 9018 non-null float64
7 vehicle_ownership 10000 non-null float64
8 vehicle_year 10000 non-null object
9 married 10000 non-null float64
10 children 10000 non-null float64
11 postal_code 10000 non-null int64
12 annual_mileage 9043 non-null float64
13 vehicle_type 10000 non-null object
14 speeding_violations 10000 non-null int64
15 duis 10000 non-null int64
16 past_accidents 10000 non-null int64
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17 outcome 10000 non-null float64
dtypes: float64(6), int64(7), object(5)
memory usage: 1.4+ MB

--- Summary Statistics ---

id age gender driving_experience \
count 10000.000000 10000.000000 10000.000000 10000
unique NaN NaN NaN 4
top NaN NaN NaN 0-9y
freq NaN NaN NaN 3530
mean 500521.906800 1.489500 0.499000 NaN
std 290030.768758 1.025278 0.500024 NaN
min 101.000000 0.000000 0.000000 NaN
25% 249638.500000 1.000000 0.000000 NaN
50% 501777.000000 1.000000 0.000000 NaN
75% 753974.500000 2.000000 1.000000 NaN
max 999976.000000 3.000000 1.000000 NaN

education income credit_score vehicle_ownership \
count 10000 10000 9018.000000 10000.000000
unique 3 4 NaN NaN
top high school upper class NaN NaN
freq 4157 4336 NaN NaN
mean NaN NaN 0.515813 0.697000
std NaN NaN 0.137688 0.459578
min NaN NaN 0.053358 0.000000
25% NaN NaN 0.417191 0.000000
50% NaN NaN 0.525033 1.000000
75% NaN NaN 0.618312 1.000000
max NaN NaN 0.960819 1.000000

vehicle_year married children postal_code annual_mileage \
count 10000 10000.000000 10000.000000 10000.000000 9043.000000
unique 2 NaN NaN NaN NaN
top before 2015 NaN NaN NaN NaN
freq 6967 NaN NaN NaN NaN
mean NaN 0.498200 0.688800 19864.548400 11697.003207
std NaN 0.500022 0.463008 18915.613855 2818.434528
min NaN 0.000000 0.000000 10238.000000 2000.000000
25% NaN 0.000000 0.000000 10238.000000 10000.000000
50% NaN 0.000000 1.000000 10238.000000 12000.000000
75% NaN 1.000000 1.000000 32765.000000 14000.000000
max NaN 1.000000 1.000000 92101.000000 22000.000000
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vehicle_type speeding_violations duis past_accidents \
count 10000 10000.000000 10000.00000 10000.000000
unique 2 NaN NaN NaN
top sedan NaN NaN NaN
freq 9523 NaN NaN NaN
mean NaN 1.482900 0.23920 1.056300
std NaN 2.241966 0.55499 1.652454
min NaN 0.000000 0.00000 0.000000
25% NaN 0.000000 0.00000 0.000000
50% NaN 0.000000 0.00000 0.000000
75% NaN 2.000000 0.00000 2.000000
max NaN 22.000000 6.00000 15.000000

outcome
count 10000.000000
unique NaN
top NaN
freq NaN
mean 0.313300
std 0.463858
min 0.000000
25% 0.000000
50% 0.000000
75% 1.000000
max 1.000000

--- First 5 Rows ---

id age gender driving_experience education income \
0 569520 3 0 0-9y high school upper class
1 750365 0 1 0-9y none poverty
2 199901 0 0 0-9y high school working class
3 478866 0 1 0-9y university working class
4 731664 1 1 10-19y none working class

credit_score vehicle_ownership vehicle_year married children \
0 0.629027 1.0 after 2015 0.0 1.0
1 0.357757 0.0 before 2015 0.0 0.0
2 0.493146 1.0 before 2015 0.0 0.0
3 0.206013 1.0 before 2015 0.0 1.0
4 0.388366 1.0 before 2015 0.0 0.0

postal_code annual_mileage vehicle_type speeding_violations duis \
0 10238 12000.0 sedan 0 0
1 10238 16000.0 sedan 0 0
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2 10238 11000.0 sedan 0 0
3 32765 11000.0 sedan 0 0
4 32765 12000.0 sedan 2 0

past_accidents outcome
0 0 0.0
1 0 1.0
2 0 0.0
3 0 0.0
4 1 1.0

--- Unique Values ---

id: [569520 750365 199901 ... 468409 903459 442696]
age: [3 0 1 2]
gender: [0 1]
driving_experience: ['0-9y' '10-19y' '20-29y' '30y+']
education: ['high school' 'none' 'university']
income: ['upper class' 'poverty' 'working class' 'middle class']
credit_score: [0.62902731 0.35775712 0.49314579 ... 0.47094023 0.36418478 0.43522478]
vehicle_ownership: [1. 0.]
vehicle_year: ['after 2015' 'before 2015']
married: [0. 1.]
children: [1. 0.]
postal_code: [10238 32765 92101 21217]
annual_mileage: [12000. 16000. 11000. 13000. 14000. 10000. 8000. nan 18000. 17000.

7000. 15000. 9000. 5000. 6000. 19000. 4000. 3000. 2000. 20000.
21000. 22000.]

vehicle_type: ['sedan' 'sports car']
speeding_violations: [ 0 2 3 7 6 4 10 13 1 5 9 8 12 11 15 17 19 18 16 14 22]
duis: [0 2 1 3 4 5 6]
past_accidents: [ 0 1 3 7 2 5 4 6 8 10 11 9 12 14 15]
outcome: [0. 1.]

--- Imputing Missing Values ---

Imputing missing values in 'credit_score' based on group means of 'outcome'
Imputing missing values in 'annual_mileage' based on group means of 'outcome'

--- Any missing values again ? ---

id 0
age 0
gender 0
driving_experience 0
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education 0
income 0
credit_score 0
vehicle_ownership 0
vehicle_year 0
married 0
children 0
postal_code 0
annual_mileage 0
vehicle_type 0
speeding_violations 0
duis 0
past_accidents 0
outcome 0
dtype: int64

best_feature best_accuracy
0 driving_experience 0.7771

7 Result/Findings

• The analysis identified driving_experience (indicating the years the client has been driv-
ing) as the best predictor of whether a customer will file a claim, with an accuracy score of
77.7%. This indicates that the model correctly predicted claims and non-claims in approxi-
mately 78 out of 100 cases, making this feature a significant factor in claim prediction.

8 Recommendations

None

9 Limitations

None

10 Conclusion

My analysis identified driving_experience (years of driving) as the strongest predictor of claim
submissions, achieving an accuracy score of 77.7%. This result highlights the importance of driving
experience in assessing customer risk. The model correctly classified claims and non-claims in 78
out of 100 cases.
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Logistic regression was used to evaluate the predictive power of individual features, and accuracy
was calculated using a confusion matrix. The prominence of driving experience suggests that
more experienced drivers may exhibit different risk profiles, which could guide targeted policy
offerings.

I recommend incorporating this insight into your risk assessment models.
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