
COURSE 19 | SAMPLING AND POINT IN
PYTHON
Lawal’s Note

2024-12-26

Table of contents

0.1 Chapter 1: Introduction to Sampling . 2
0.1.1 Chapter 1.1: Sampling and point estimates 3
0.1.2 Exercise 1.1.1 . 4
0.1.3 Exercise 1.1.2 . 7
0.1.4 Chapter 1.2: Convenience sampling . 8
0.1.5 Exercise 1.2.1 . 10
0.1.6 Question . 11
0.1.7 Exercise 1.2.2 . 12
0.1.8 Question . 13
0.1.9 Chapter 1.3: Pseudo-random number generation 14
0.1.10 Exercise 1.3.1 . 15
0.1.11 Exercise 1.3.2 . 17

0.2 CHAPTER 2: Sampling Methods . 18
0.2.1 Chapter 2.1: Simple random and systematic sampling 19
0.2.2 Exercise 2.1.1 . 20
0.2.3 Exercise 2.1.2 . 23
0.2.4 Exercise 2.1.3 . 25
0.2.5 Chapter 2.2: Stratified and weighted random sampling 28
0.2.6 Exercise 2.2.2 . 32
0.2.7 Exercise 2.2.3 . 36
0.2.8 Chapter 2.3: Cluster sampling . 39
0.2.9 Exercise 2.3.1 . 40
0.2.10 Chapter 2.4: Comparing sampling methods 49
0.2.11 Exercise 2.4.1 . 51
0.2.12 Exercise 2.4.4 . 54

0.3 CHAPTER 3: Sampling Distributions . 56
0.3.1 Chapter 3.1: Relative error of point estimates 56
0.3.2 Exercise 3.1.1 . 57

1

0.3.3 Chapter 3.2: Creating a sampling distribution 58
0.3.4 Exercise 3.2.1 . 59
0.3.5 Chapter 3.3: Approximate sampling distributions 61
0.3.6 Exercise 3.3.1 . 62
0.3.7 Exercise 3.3.2 . 64
0.3.8 Chapter 3.4: Standard errors and the Central Limit Theorem 66
0.3.9 Exercise 3.4.1 . 67
0.3.10 Exercise 3.4.2 . 69

0.4 CHAPTER 4: Bootstrap Distributions . 71
0.4.1 Chapter 4.1: Introduction to bootstrapping 71
0.4.2 Exercise 4.1.1 . 73
0.4.3 Chapter 4.2: Comparing sampling and bootstrap distributions 75
0.4.4 Exercise 4.2.1 . 77
0.4.5 Exercise 4.2.2 . 78
0.4.6 Exercise 4.2.3 . 80
0.4.7 Chapter 4.3: Confidence intervals . 81
0.4.8 Exercise 4.3.1 . 83

0.5 Reference . 85

0.1 Chapter 1: Introduction to Sampling

Learn what sampling is and why it is so powerful. You’ll also learn about the problems caused by
convenience sampling and the differences between true randomness and pseudo-randomness.

2

0.1.1 Chapter 1.1: Sampling and point estimates

Hi! Welcome to the course! I’m James, and I’ll be your host as we delve into the world of sampling
data with Python. To start, let’s look at what sampling is and why it might be useful.

Estimating the population of France

Let’s consider the problem of counting how many people live in France. The standard approach is
to take a census. This means contacting every household and asking how many people live there.
There are lots of people in France. Since there are millions of people in France, this is a really
expensive process. Even with modern data collection technology, most countries will only conduct
a census every five or ten years due to the cost.

Sampling households

In 1786, Pierre-Simon Laplace realized you could estimate the population with less effort. Rather
than asking every household who lived there, he asked a small number of households and used
statistics to estimate the number of people in the whole population. This technique of working
with a subset of the whole population is called sampling.

Population vs. sample

Two definitions are important for this course. The population is the complete set of data that we
are interested in. The previous example involved the literal population of France, but in statistics,
it doesn’t have to refer to people. One thing to bear in mind is that there is usually no equivalent
of the census, so typically, we won’t know what the whole population is like - more on this in a
moment. The sample is the subset of data that we are working with.

Coffee rating dataset

Picture a dataset of professional ratings of coffees. Each row corresponds to one coffee, and there
are thirteen hundred and thirty-eight rows in the dataset. The coffee is given a score from zero to
one hundred, which is stored in the total_cup_points column. Other columns contain contextual
information like the variety and country of origin and scores between zero and ten for attributes
of the coffee such as aroma and body. These scores are averaged across all the reviewers for that
particular coffee. It doesn’t contain every coffee in the world, so we don’t know exactly what the
population of coffees is. However, there are enough here that we can think of it as our population
of interest.

Points vs. flavor: population

Let’s consider the relationship between cup points and flavor by selecting those two columns. This
dataset contains all thirteen hundred and thirty-eight rows from the original dataset.

3

Points vs. flavor: 10 row sample

The pandas .sample method returns a random subset of rows. Setting n to ten means ten random
rows are returned. By default, rows from the original dataset can’t appear in the sample dataset
multiple times, so we are guaranteed to have ten unique rows in our sample.

Python sampling for Series

The .sample method also works on pandas Series. Here, using square-bracket subsetting retrieves
the total_cup_points column as a Series, and the n argument specifies how many random values
to return.

Population parameters & point estimates

A population parameter is a calculation made on the population dataset. We aren’t limited to
counting values either; here, we calculate the mean of the cup points using NumPy. By contrast,
a point estimate, or sample statistic, is a calculation based on the sample dataset. Here, the mean
of the total cup points is calculated on the sample. Notice that the means are very similar but
not identical.

Point estimates with pandas

Working with pandas can be easier than working with NumPy. These mean calculations can be
performed using the .mean pandas method.

0.1.2 Exercise 1.1.1

Simple sampling with pandas

Throughout this chapter, you’ll be exploring song data from Spotify. Each row of this population
dataset represents a song, and there are over 40,000 rows. Columns include the song name, the
artists who performed it, the release year, and attributes of the song like its duration, tempo, and
danceability. You’ll start by looking at the durations.

Your first task is to sample the Spotify dataset and compare the mean duration of the population
with the sample.

Instructions

1. Sample 1000 rows from spotify, assigning to spotify_sample.
2. Calculate the mean duration in minutes from spotify using pandas.
3. Calculate the mean duration in minutes from spotify_sample using pandas.

4

Importing pandas
import pandas as pd

Importing the course arrays
spotify = pd.read_feather("datasets/spotify_2000_2020.feather")

Sample 1000 rows from spotify_population
spotify_sample = spotify.sample(n=1000)

Print the sample
print(spotify_sample)

Calculate the mean duration in mins from spotify_population
mean_dur_pop = spotify['duration_minutes'].mean()

Calculate the mean duration in mins from spotify_sample
mean_dur_samp = spotify_sample['duration_minutes'].mean()

Print the means
print(mean_dur_pop)
print(mean_dur_samp)

acousticness artists \
21088 0.108000 ['Keith Urban']
37017 0.686000 ['Crecer German']
24030 0.030100 ['Keith Urban']
6412 0.795000 ['Rufus Wainwright']
26227 0.017000 ['Lloyd']
...
633 0.362000 ['Joshua Radin']
41418 0.000479 ['Imagine Dragons']
17777 0.273000 ['Josef "J7" Lord', 'Christopher H. Knight']
2599 0.021800 ["Lil' Flip", 'Lea']
23197 0.027800 ['Kenny Chesney']

danceability duration_ms duration_minutes energy explicit \
21088 0.624 323040.0 5.384000 0.840 0.0
37017 0.785 202573.0 3.376217 0.381 0.0
24030 0.657 273587.0 4.559783 0.785 0.0
6412 0.460 284467.0 4.741117 0.378 0.0
26227 0.527 240107.0 4.001783 0.796 1.0
...
633 0.545 149013.0 2.483550 0.255 0.0
41418 0.634 210933.0 3.515550 0.662 0.0

5

17777 0.751 142581.0 2.376350 0.805 1.0
2599 0.845 225187.0 3.753117 0.346 0.0
23197 0.684 235733.0 3.928883 0.840 0.0

id instrumentalness key liveness loudness \
21088 0b9djfiuDIMw1zKH6gV74g 0.000546 4.0 0.1440 -5.768
37017 0VYFakqQG8p6yHrqq9TAoY 0.000000 6.0 0.1070 -5.991
24030 3PY88239tYBnAv5LQoU2oY 0.000005 3.0 0.0927 -8.428
6412 586EonpqbFo5GRPRy8IKqf 0.000000 4.0 0.0905 -8.950
26227 0npGoOENjn7vVvIMmvWekQ 0.000000 1.0 0.0798 -5.111
...
633 2ZaYFNn1YQuLSVdHhanr4Q 0.000018 8.0 0.0841 -14.844
41418 2bzitsPcImYC6DZWvvLCQi 0.001420 6.0 0.1110 -7.543
17777 1apH42Wa9c0Iy2X7VZOZr9 0.000000 9.0 0.0766 -7.444
2599 3FaUH7ZMjW1hv9Jx6MIAIf 0.000000 0.0 0.1350 -9.381
23197 3tHPjLBakLS48aumhFpJMt 0.000000 9.0 0.3290 -5.753

mode name popularity \
21088 1.0 Somebody Like You 67.0
37017 0.0 Quién Te Entiende 64.0
24030 1.0 Long Hot Summer 59.0
6412 1.0 Cigarettes And Chocolate Milk 40.0
26227 0.0 Lay It Down 57.0
...
633 1.0 Only You 55.0
41418 1.0 Zero - From the Original Motion Picture "Ralph... 70.0
17777 0.0 Who Do You Voodoo (From Dead Island) 48.0
2599 1.0 Sunshine (feat. Lea) 47.0
23197 1.0 Young 55.0

release_date speechiness tempo valence year
21088 2002-01-01 0.0337 111.020 0.656 2002.0
37017 2016-10-07 0.0348 121.885 0.872 2016.0
24030 2010-01-01 0.0370 127.987 0.769 2010.0
6412 2001 0.0271 97.891 0.166 2001.0
26227 2011 0.0620 155.990 0.534 2011.0
...
633 2006 0.0311 98.088 0.831 2006.0
41418 2018-11-09 0.0325 90.011 0.244 2018.0
17777 2011-09-13 0.3030 93.045 0.507 2011.0
2599 2004-03-30 0.1060 93.989 0.819 2004.0
23197 2002-04-02 0.0433 125.801 0.682 2002.0

[1000 rows x 20 columns]
3.8521519140900073

6

3.9347189666666664

Note

Notice that the mean song duration in the sample is similar, but not identical to the mean
song duration in the whole population.

0.1.3 Exercise 1.1.2

Simple sampling and calculating with NumPy

You can also use numpy to calculate parameters or statistics from a list or pandas Series.

You’ll be turning it up to eleven and looking at the loudness property of each song.

Instructions

1. Create a pandas Series, loudness_pop, by subsetting the loudness column from spotify.

• Sample loudness_pop to get 100 random values, assigning to loudness_samp.

2. Calculate the mean of loudness_pop using numpy.
3. Calculate the mean of loudness_samp using numpy.

Importing pandas
import pandas as pd
import numpy as np

Importing the course arrays
spotify = pd.read_feather("datasets/spotify_2000_2020.feather")

Create a pandas Series from the loudness column of spotify_population
loudness_pop = spotify['loudness']

Sample 100 values of loudness_pop
loudness_samp = loudness_pop.sample(n=100)

print(loudness_samp)

Calculate the mean of loudness_pop
mean_loudness_pop = np.mean(loudness_pop)

Calculate the mean of loudness_samp
mean_loudness_samp = np.mean(loudness_samp)

7

print(mean_loudness_pop)
print(mean_loudness_samp)

19881 -3.844
16465 -4.749
13177 -6.521
8441 -9.341
22506 -4.081

...
4917 -12.201
15219 -5.029
9224 -4.501
30503 -4.289
9181 -4.631
Name: loudness, Length: 100, dtype: float64
-7.366856851353947
-7.067409999999999

Note

Again, notice that the calculated value (the mean) is close but not identical in each case.

0.1.4 Chapter 1.2: Convenience sampling

The point estimates you calculated in the previous exercises were very close to the population
parameters that they were based on, but is this always the case?

The Literary Digest election prediction

In 1936, a newspaper called The Literary Digest ran an extensive poll to try to predict the next US
presidential election. They phoned ten million voters and had over two million responses. About
one-point-three million people said they would vote for Landon, and just under one million people
said they would vote for Roosevelt. That is, Landon was predicted to get fifty-seven percent of
the vote, and Roosevelt was predicted to get forty-three percent of the vote. Since the sample
size was so large, it was presumed that this poll would be very accurate. However, in the election,
Roosevelt won by a landslide with sixty-two percent of the vote. So what went wrong? Well, in
1936, telephones were a luxury, so the only people who had been contacted by The Literary Digest
were relatively rich. The sample of voters was not representative of the whole population of voters,
and so the poll suffered from sample bias. The data was collected by the easiest method, in this
case, telephoning people. This is called convenience sampling and is often prone to sample bias.
Before sampling, we need to think about our data collection process to avoid biased results.

8

Finding the mean age of French people

Let’s look at another example. While on vacation at Disneyland Paris, you start wondering about
the mean age of French people. To get an answer, you ask ten people stood nearby about their
ages. Their mean age is twenty-four-point-six years old. Do you think this will be a good estimate
of the mean age of all French citizens?

How accurate was the survey?

On the left, you can see mean ages taken from the French census. Notice that the population
has been gradually getting older as birth rates decrease and life expectancy increases. In 2015,
the mean age was over forty, so our estimate of twenty-four-point-six is way off. The problem
is that the family-friendly fun at Disneyland means that the sample ages weren’t representative
of the general population. There are generally more eight-year-olds than eighty-year-olds riding
rollercoasters.

Convenience sampling coffee ratings

Let’s return to the coffee ratings dataset and look at the mean cup points population parameter.
The mean is about eighty-two. One form of convenience sampling would be to take the first ten
rows, rather than the random rows we saw in the previous video. We can take the first 10 rows
with the pandas head method. The mean cup points from this sample is higher at eighty-nine.
The discrepancy suggests that coffees with higher cup points appear near the start of the dataset.
Again, the convenience sample isn’t representative of the whole population.

Visualizing selection bias

Histograms are a great way to visualize the selection bias. We can create a histogram of the total
cup points from the population, which contains values ranging from around 59 to around 91. The
np.arange function can be used to create bins of width 2 from 59 to 91. Recall that the stop value
in np.arange is exclusive, so we specify 93, not 91. Here’s the same code to generate a histogram
for the convenience sample.

Distribution of a population and of a convenience sample

Comparing the two histograms, it is clear that the distribution of the sample is not the same as
the population: all of the sample values are on the right-hand side of the plot.

Visualizing selection bias for a random sample

This time, we’ll compare the total_cup_points distribution of the population with a random
sample of 10 coffees.

9

Distribution of a population and of a simple random sample

Notice how the shape of the distributions is more closely aligned when random sampling is used.

0.1.5 Exercise 1.2.1

Are findings from the sample generalizable?

You just saw how convenience sampling—collecting data using the easiest method—can result in
samples that aren’t representative of the population. Equivalently, this means findings from the
sample are not generalizable to the population. Visualizing the distributions of the population and
the sample can help determine whether or not the sample is representative of the population.

The Spotify dataset contains an acousticness column, which is a confidence measure from zero
to one of whether the track was made with instruments that aren’t plugged in. You’ll compare
the acousticness distribution of the total population of songs with a sample of those songs.

Instructions

1. Plot a histogram of the acousticness from spotify with bins of width 0.01 from 0 to 1
using pandas .hist().

2. Update the histogram code to use the spotify_mysterious_sample dataset.

Importing pandas
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Importing the course arrays
spotify = pd.read_feather("datasets/spotify_2000_2020.feather")

Visualize the distribution of acousticness with a histogram
spotify['acousticness'].hist(bins=np.arange(0,1.01,0.01))
plt.show()

Generate a convenience sample where acousticness is consistently higher
spotify_high_acousticness = spotify[(spotify['acousticness'] >= 0.85) & (spotify['acousticness'] <= 1.0)]

Sample 1107 entries from the high acousticness subset
spotify_mysterious_sample = spotify_high_acousticness.sample(n=1107)

Update the histogram to use spotify_mysterious_sample
spotify_mysterious_sample['acousticness'].hist(bins=np.arange(0, 1.01, 0.01))
plt.show()

10

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000

6000

7000

8000

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

0.1.6 Question

Compare the two histograms you drew. Are the acousticness values in the sample generalizable
to the general population?

No. The acousticness samples are consistently higher than those in the general pop-
ulation.

The acousticness values in the sample are all greater than 0.85, whereas they range
from 0 to 1 in the whole population.

11

0.1.7 Exercise 1.2.2

Are these findings generalizable?

Let’s look at another sample to see if it is representative of the population. This time, you’ll look
at the duration_minutes column of the Spotify dataset, which contains the length of the song
in minutes.

Instructions

• Plot a histogram of duration_minutes from spotify with bins of width 0.5 from 0 to 15
using pandas .hist().

• Update the histogram code to use the spotify_mysterious_sample2 dataset.

Importing pandas
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Importing the course arrays
spotify = pd.read_feather("datasets/spotify_2000_2020.feather")

Generate a convenience sample where duration_minutes is within the specified range
spotify_duration_range = spotify[(spotify['duration_minutes'] >= 0.8079999999) & (spotify['duration_minutes'] <= 9.822)]

Sample 50 entries from the spotify_mysterious_sample2 dataset
spotify_mysterious_sample2 = spotify_duration_range.sample(n=50)

Visualize the distribution of duration_minutes in the population with a histogram
spotify['duration_minutes'].hist(bins=np.arange(0,15.5,0.5))
plt.show()

Visualize the distribution of duration_minutes as a histogram
spotify_mysterious_sample2['duration_minutes'].hist(bins=np.arange(0, 15.5, 0.5))
plt.show()

12

0 2 4 6 8 10 12 14
0

2000

4000

6000

8000

10000

0 2 4 6 8 10 12 14
0

2

4

6

8

10

0.1.8 Question

Compare the two histograms you drew. Are the duration values in the sample generalizable to the
general population?

0.1.8.1 Answer

Yes. The sample selected is likely a random sample of all songs in the population.

13

The duration values in the sample show a similar distribution to those in the whole population, so
the results are generalizable.

0.1.9 Chapter 1.3: Pseudo-random number generation

You previously saw how to use a random sample to get results similar to those in the population.
But how does a computer actually do this random sampling?

What does random mean?

There are several meanings of random in English. This definition from Oxford Languages is the
most interesting for us. If we want to choose data points at random from a population, we shouldn’t
be able to predict which data points would be selected ahead of time in some systematic way.

True random numbers

To generate truly random numbers, we typically have to use a physical process like flipping coins or
rolling dice. The Hotbits service generates numbers from radioactive decay, and RANDOM.ORG
generates numbers from atmospheric noise, which are radio signals generated by lightning. Un-
fortunately, these processes are fairly slow and expensive for generating random numbers.

https://www.fourmilab.ch/hotbits

https://www.random.org

Pseudo-random number generation

For most use cases, pseudo-random number generation is better since it is cheap and fast. Pseudo-
random means that although each value appears to be random, it is actually calculated from the
previous random number. Since you have to start the calculations somewhere, the first random
number is calculated from what is known as a seed value. The word random is in quotes to
emphasize that this process isn’t really random. If we start from a particular seed value, all future
numbers will be the same.

Pseudo-random number generation example

For example, suppose we have a function to generate pseudo-random values called calc_next_random.
To begin, we pick a seed number, in this case, one. calc_next_random does some calculations
and returns three. We then feed three into calc_next_random, and it does the same set of
calculations and returns two. And if we can keep feeding in the last number, it will return
something apparently random. Although the process is deterministic, the trick to a random
number generator is to make it look like the values are random.

14

https://www.fourmilab.ch/hotbits
https://www.random.org

Random number generating functions

NumPy has many functions for generating random numbers from statistical distributions. To use
each of these, make sure to prepend each function name with numpy.random or np.random. Some
of them, like .uniform and .normal, may be familiar. Others have more niche applications.

Visualizing random numbers

Let’s generate some pseudo-random numbers. The first arguments to each random number func-
tion specify distribution parameters. The size argument specifies how many numbers to generate,
in this case, five thousand. We’ve chosen the beta distribution, and its parameters are named a
and b. These random numbers come from a continuous distribution, so a great way to visualize
them is with a histogram. Here, because the numbers were generated from the beta distribution,
all the values are between zero and one.

Random numbers seeds

To set a random seed with NumPy, we use the .random.seed method. Random.seed takes an
integer for the seed number, which can be any number you like. .normal generates pseudo-random
numbers from the normal distribution. The loc and scale arguments set the mean and standard
deviation of the distribution, and the size argument determines how many random numbers from
that distribution will be returned. If we call .normal a second time, we get two different random
numbers. If we reset the seed by calling random.seed with the same seed number, then call
.normal again, we get the same numbers as before. This makes our code reproducible.

Using a different seed

Now let’s try a different seed. This time, calling .normal generates different numbers.

0.1.10 Exercise 1.3.1

Generating random numbers

You’ve used .sample() to generate pseudo-random numbers from a set of values in a DataFrame.
A related task is to generate random numbers that follow a statistical distribution, like the uniform
distribution or the normal distribution.

Each random number generation function has distribution-specific arguments and an argument
for specifying the number of random numbers to generate.

15

Instructions

1. Generate 5000 numbers from a uniform distribution, setting the parameters low to -3 and
high to 3.

2. Generate 5000 numbers from a normal distribution, setting the parameters loc to 5 and
scale to 2.

3. Plot a histogram of uniforms with bins of width of 0.25 from -3 to 3 using plt.hist().
4. Plot a histogram of normals with bins of width of 0.5 from -2 to 13 using plt.hist().

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Generate random numbers from a Uniform(-3, 3)
uniforms = np.random.uniform(low=-3, high=3, size=5000)

Print uniforms
print(uniforms)

Generate random numbers from a Normal(5, 2)
normals = np.random.normal(loc=5, scale = 2, size= 5000)

Print normals
print(normals)

Plot a histogram of uniform values, binwidth 0.25
plt.hist(uniforms, bins=np.arange(-3,3.25,0.25))
plt.show()

Plot a histogram of normal values, binwidth 0.5
plt.hist(normals, bins = np.arange(-2, 13.5, 0.5))
plt.show()

[0.92847775 1.1912387 -1.39016428 ... -0.27583228 1.09736343
-0.73869707]
[6.43786331 8.54350627 6.63613505 ... 5.70630282 4.97970263 4.26095338]

16

3 2 1 0 1 2 3
0

50

100

150

200

250

2 0 2 4 6 8 10 12
0

100

200

300

400

500

0.1.11 Exercise 1.3.2

Understanding random seeds

While random numbers are important for many analyses, they create a problem: the results you
get can vary slightly. This can cause awkward conversations with your boss when your script for
calculating the sales forecast gives different answers each time.

Setting the seed for numpy’s random number generator helps avoid such problems by making the
random number generation reproducible.

17

Question 1

Which statement about x and y is true?

import numpy as np
np.random.seed(123)
x = np.random.normal(size=5)
y = np.random.normal(size=5)

The values of x are different from those of y

Question 2

Which statement about x and y is true?

import numpy as np
np.random.seed(123)
x = np.random.normal(size=5)
np.random.seed(123)
y = np.random.normal(size=5)

x and y have identical values.

Question 3

Which statement about x and y is true?

import numpy as np
np.random.seed(123)
x = np.random.normal(size=5)
np.random.seed(456)
y = np.random.normal(size=5)

The values of x are different from those of y.

0.2 CHAPTER 2: Sampling Methods

It’s time to get hands-on and perform the four random sampling methods in Python: simple,
systematic, stratified, and cluster.

18

0.2.1 Chapter 2.1: Simple random and systematic sampling

There are several methods of sampling from a population. In this video, we’ll look at simple
random sampling and systematic random sampling.

Simple random sampling

Simple random sampling works like a raffle or lottery. We start with our population of raffle tickets
or lottery balls and randomly pick them out one at a time.

Simple random sampling of coffees

In our coffee ratings dataset, instead of raffle tickets or lottery balls, the population consists of
coffee varieties. To perform simple random sampling, we take some at random, one at a time. Each
coffee has the same chance as any other of being picked. When using this technique, sometimes
we might end up with two coffees that were next to each other in the dataset, and sometimes we
might end up with large areas of the dataset that were not selected from at all.

Simple random sampling with pandas

We’ve already seen how to do simple random sampling with pandas. We call .sample and set n
to the size of the sample. We can also set the seed using the random_state argument to generate
reproducible results, just like we did pseudo-random number generation. Previously, by not setting
random_state when sampling, our code would generate a different random sample each time it
was run.

Systematic sampling

Another sampling method is known as systematic sampling. This samples the population at
regular intervals. Here, looking from top to bottom and left to right within each row, every fifth
coffee is sampled.

Systematic sampling - defining the interval

Systematic sampling with pandas is slightly trickier than simple random sampling. The tricky
part is determining how big the interval between each row should be for a given sample size.
Suppose we want a sample size of five coffees. The population size is the number of rows in the
whole dataset, and in this case, it’s one thousand three hundred and thirty-eight. The interval is
the population size divided by the sample size, but because we want the answer to be an integer,
we perform integer division with two forward slashes. This is like standard division but discards
any fractional part. One-three-three-eight divided by five is actually two hundred and sixty-seven-
point-six, and discarding the fractional part leaves two hundred and sixty-seven. Thus, to get
a systematic sample of five coffees, we will select every two hundred sixty-seventh coffee in the
dataset.

19

Systematic sampling - selecting the rows

To select every two hundred and sixty-seventh row, we call dot-iloc on coffee_ratings and pass
double-colons and the interval, which is 267 in this case. Double-colon interval tells pandas to
select every two hundred and sixty-seventh row from zero to the end of the DataFrame.

The trouble with systematic sampling

There is a problem with systematic sampling, though. Suppose we are interested in statistics
about the aftertaste attribute of the coffees. To examine this, first, we use reset_index to
create a column of index values in our DataFrame that we can plot. Plotting aftertaste against
index shows a pattern. Earlier rows generally have higher aftertaste scores than later rows. This
introduces bias into the statistics that we calculate. In general, it is only safe to use systematic
sampling if a plot like this has no pattern; that is, it just looks like noise.

Making systematic sampling safe

To ensure that systematic sampling is safe, we can randomize the row order before sampling. dot-
sample has an argument named frac that lets us specify the proportion of the dataset to return in
the sample, rather than the absolute number of rows that n specifies. Setting frac to one randomly
samples the whole dataset. In effect, this randomly shuffles the rows. Next, the indices need to
be reset so that they go in order from zero again. Specifying drop equals True clears the previous
row indexes, and chaining to another reset_index call creates a column containing these new
indexes. Redrawing the plot with the shuffled dataset shows no pattern between aftertaste and
index. This is great, but note that once we’ve shuffled the rows, systematic sampling is essentially
the same as simple random sampling.

0.2.2 Exercise 2.1.1

Simple random sampling

The simplest method of sampling a population is the one you’ve seen already. It is known as
simple random sampling (sometimes abbreviated to “SRS”), and involves picking rows at random,
one at a time, where each row has the same chance of being picked as any other.

In this chapter, you’ll apply sampling methods to a synthetic (fictional) employee attrition dataset
from IBM, where “attrition” in this context means leaving the company.

Instructions

• Sample 70 rows from attrition using simple random sampling, setting the random seed to
18900217.

• Print the sample dataset, attrition_samp. What do you notice about the indices?

20

Importing pandas
import pandas as pd

Importing the course arrays
attrition = pd.read_feather("datasets/attrition.feather")

Sample 70 rows using simple random sampling and set the seed
attrition_samp = attrition.sample(n=70, random_state=18900217)

Print the sample
print(attrition_samp)

Age Attrition BusinessTravel DailyRate Department \
1134 35 0.0 Travel_Rarely 583 Research_Development
1150 52 0.0 Non-Travel 585 Sales
531 33 0.0 Travel_Rarely 931 Research_Development
395 31 0.0 Travel_Rarely 1332 Research_Development
392 29 0.0 Travel_Rarely 942 Research_Development
...
361 27 0.0 Travel_Frequently 1410 Sales
1180 36 0.0 Travel_Rarely 530 Sales
230 26 0.0 Travel_Rarely 1443 Sales
211 29 0.0 Travel_Frequently 410 Research_Development
890 30 0.0 Travel_Frequently 1312 Research_Development

DistanceFromHome Education EducationField \
1134 25 Master Medical
1150 29 Master Life_Sciences
531 14 Bachelor Medical
395 11 College Medical
392 15 Below_College Life_Sciences
...
361 3 Below_College Medical
1180 2 Master Life_Sciences
230 23 Bachelor Marketing
211 2 Below_College Life_Sciences
890 2 Master Technical_Degree

EnvironmentSatisfaction Gender ... PerformanceRating \
1134 High Female ... Excellent
1150 Low Male ... Excellent
531 Very_High Female ... Excellent
395 High Male ... Excellent
392 Medium Female ... Excellent
...

21

361 Very_High Female ... Outstanding
1180 High Female ... Excellent
230 High Female ... Excellent
211 Very_High Female ... Excellent
890 Very_High Female ... Excellent

RelationshipSatisfaction StockOptionLevel TotalWorkingYears \
1134 High 1 16
1150 Medium 2 16
531 Very_High 1 8
395 Very_High 0 6
392 Low 1 6
...
361 Medium 2 6
1180 High 0 17
230 High 1 5
211 High 3 4
890 Very_High 0 10

TrainingTimesLastYear WorkLifeBalance YearsAtCompany \
1134 3 Good 16
1150 3 Good 9
531 5 Better 8
395 2 Good 6
392 2 Good 5
...
361 3 Better 6
1180 2 Good 13
230 2 Good 2
211 3 Better 3
890 2 Better 9

YearsInCurrentRole YearsSinceLastPromotion YearsWithCurrManager
1134 10 10 1
1150 8 0 0
531 7 1 6
395 5 0 1
392 4 1 3
...
361 5 0 4
1180 7 6 7
230 2 0 0
211 2 0 2
890 7 0 7

22

[70 rows x 31 columns]

0.2.3 Exercise 2.1.2

Systematic sampling

One sampling method that avoids randomness is called systematic sampling. Here, you pick rows
from the population at regular intervals.

For example, if the population dataset had one thousand rows, and you wanted a sample size of
five, you could pick rows 0, 200, 400, 600, and 800.

Instructions

1.Set the sample size to 70. - Calculate the population size from attrition. - Calculate the
interval between the rows to be sampled.

2. Systematically sample attrition to get the rows of the population at each interval, start-
ing at 0; assign the rows to attrition_sys_samp

Importing pandas
import pandas as pd

Importing the course arrays
attrition = pd.read_feather("datasets/attrition.feather")

Set the sample size to 70
sample_size = 70

Calculate the population size from attrition_pop
pop_size = len(attrition)

Calculate the interval
interval = pop_size//sample_size

Systematically sample 70 rows
attrition_sys_samp = attrition.iloc[::interval]

Print the sample
print(attrition_sys_samp)

Age Attrition BusinessTravel DailyRate Department \
0 21 0.0 Travel_Rarely 391 Research_Development
21 19 0.0 Travel_Rarely 1181 Research_Development
42 45 0.0 Travel_Rarely 252 Research_Development

23

63 23 0.0 Travel_Rarely 373 Research_Development
84 30 1.0 Travel_Rarely 945 Sales
...
1365 48 0.0 Travel_Rarely 715 Research_Development
1386 48 0.0 Travel_Rarely 1355 Research_Development
1407 50 0.0 Travel_Rarely 989 Research_Development
1428 50 0.0 Non-Travel 881 Research_Development
1449 52 0.0 Travel_Rarely 699 Research_Development

DistanceFromHome Education EducationField EnvironmentSatisfaction \
0 15 College Life_Sciences High
21 3 Below_College Medical Medium
42 2 Bachelor Life_Sciences Medium
63 1 College Life_Sciences Very_High
84 9 Bachelor Medical Medium
...
1365 1 Bachelor Life_Sciences Very_High
1386 4 Master Life_Sciences High
1407 7 College Medical Medium
1428 2 Master Life_Sciences Low
1449 1 Master Life_Sciences High

Gender ... PerformanceRating RelationshipSatisfaction \
0 Male ... Excellent Very_High
21 Female ... Excellent Very_High
42 Female ... Excellent Very_High
63 Male ... Outstanding Very_High
84 Male ... Excellent High
...
1365 Male ... Excellent High
1386 Male ... Excellent Medium
1407 Female ... Excellent Very_High
1428 Male ... Excellent Very_High
1449 Male ... Excellent Low

StockOptionLevel TotalWorkingYears TrainingTimesLastYear \
0 0 0 6
21 0 1 3
42 0 1 3
63 1 1 2
84 0 1 3
...
1365 0 25 3
1386 0 27 3
1407 1 29 2

24

1428 1 31 3
1449 1 34 5

WorkLifeBalance YearsAtCompany YearsInCurrentRole \
0 Better 0 0
21 Better 1 0
42 Better 1 0
63 Better 1 0
84 Good 1 0
...
1365 Best 1 0
1386 Better 15 11
1407 Good 27 3
1428 Better 31 6
1449 Better 33 18

YearsSinceLastPromotion YearsWithCurrManager
0 0 0
21 0 0
42 0 0
63 0 1
84 0 0
...
1365 0 0
1386 4 8
1407 13 8
1428 14 7
1449 11 9

[70 rows x 31 columns]

0.2.4 Exercise 2.1.3

Is systematic sampling OK?

Systematic sampling has a problem: if the data has been sorted, or there is some sort of pattern or
meaning behind the row order, then the resulting sample may not be representative of the whole
population. The problem can be solved by shuffling the rows, but then systematic sampling is
equivalent to simple random sampling.

Here you’ll look at how to determine whether or not there is a problem.

Instructions

1. Add an index column to attrition, assigning the result to attrition_id.

25

• Create a scatter plot of YearsAtCompany versus index for attrition_id using pandas
.plot().

2. Randomly shuffle the rows of attrition.

• Reset the row indexes, and add an index column to attrition.
• Repeat the scatter plot of YearsAtCompany versus index, this time using

attrition_shuffled.

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Importing the course arrays
attrition = pd.read_feather("datasets/attrition.feather")

Add an index column to attrition_pop
attrition_id = attrition.reset_index()

Plot YearsAtCompany vs. index for attrition_pop_id
attrition_id.plot(x="index", y="YearsAtCompany", kind="scatter")
plt.show()

Shuffle the rows of attrition_pop
attrition_shuffled = attrition.sample(frac=1)

Reset the row indexes and create an index column
attrition_shuffled = attrition_shuffled.reset_index(drop=True).reset_index()

Plot YearsAtCompany vs. index for attrition_shuffled
attrition_shuffled.plot(x="index", y="YearsAtCompany", kind="scatter")
plt.show()

26

0 200 400 600 800 1000 1200 1400
index

0

5

10

15

20

25

30

35

40

Ye
ar

sA
tC

om
pa

ny

0 200 400 600 800 1000 1200 1400
index

0

5

10

15

20

25

30

35

40

Ye
ar

sA
tC

om
pa

ny

Question

Does a systematic sample always produce a sample similar to a simple random sample?
No, Systematic sampling has problems when the data are sorted or contain a pattern. Shuffling
the rows makes it equivalent to simple random sampling.

27

0.2.5 Chapter 2.2: Stratified and weighted random sampling

Stratified sampling is a technique that allows us to sample a population that contains subgroups.

Coffees by country

For example, we could group the coffee ratings by country. If we count the number of coffees
by country using the value_counts method, we can see that these six countries have the most
data.

1. 1 The dataset lists Hawaii and Taiwan as countries for convenience, as they are notable
coffee-growing regions.

Filtering for 6 countries

To make it easier to think about sampling subgroups, let’s limit our analysis to these six countries.
We can use the .isin method to filter the population and only return the rows corresponding to
these six countries. This filtered dataset is stored as coffee_ratings_top.

Counts of a simple random sample

Let’s take a ten percent simple random sample of the dataset using .sample with frac set to 0.1.
We also set the random_state argument to ensure reproducibility. As with the whole dataset, we
can look at the counts for each country. To make comparisons easier, we set normalize to True to
convert the counts into a proportion, which shows what proportion of coffees in the sample came
from each country.

Comparing proportions

Here are the proportions for the population and the ten percent sample side by side. Just by
chance, in this sample, Taiwanese coffees form a disproportionately low percentage. The different
makeup of the sample compared to the population could be a problem if we want to analyze the
country of origin, for example.

Proportional stratified sampling

If we care about the proportions of each country in the sample closely matching those in the
population, then we can group the data by country before taking the simple random sample. Note
that we used the Python line continuation backslash here, which can be useful for breaking up
longer chains of pandas code like this. Calling the .sample method after grouping takes a simple
random sample within each country. Now the proportions of each country in the stratified sample
are much closer to those in the population.

28

Equal counts stratified sampling

One variation of stratified sampling is to sample equal counts from each group, rather than an
equal proportion. The code only has one change from before. This time, we use the n argument
in .sample instead of frac to extract fifteen randomly-selected rows from each country. Here, the
resulting sample has equal proportions of one-sixth from each country.

Weighted random sampling

A close relative of stratified sampling that provides even more flexibility is weighted random
sampling. In this variant, we create a column of weights that adjust the relative probability of
sampling each row. For example, suppose we thought that it was important to have a higher
proportion of Taiwanese coffees in the sample than in the population. We create a condition, in
this case, rows where the country of origin is Taiwan. Using the where function from NumPy, we
can set a weight of two for rows that match the condition and a weight of one for rows that don’t
match the condition. This means when each row is randomly sampled, Taiwanese coffees have two
times the chance of being picked compared to other coffees. When we call .sample, we pass the
column of weights to the weights argument.

Weighted random sampling results

Here, we can see that Taiwan now contains seventeen percent of the sampled dataset, compared to
eight-point-five percent in the population. This sort of weighted sampling is common in political
polling, where we need to correct for under- or over-representation of demographic groups.

0.2.5.1 Exercise 2.2.1

Proportional stratified sampling

If you are interested in subgroups within the population, then you may need to carefully control the
counts of each subgroup within the population. Proportional stratified sampling results in subgroup
sizes within the sample that are representative of the subgroup sizes within the population. It is
equivalent to performing a simple random sample on each subgroup.

Instructions

1. Get the proportion of employees by Education level from attrition.
2. Use proportional stratified sampling on attrition_pop to sample 40% of each Education

group, setting the seed to 2022.
3. Get the proportion of employees by Education level from attrition_strat.

29

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Importing the course arrays
attrition = pd.read_feather("datasets/attrition.feather")

Proportion of employees by Education level
education_counts_pop = attrition['Education'].value_counts(normalize=True)

Print education_counts_pop
print(education_counts_pop)

Proportional stratified sampling for 40% of each Education group
attrition_strat = attrition.groupby('Education')\
.sample(frac=0.4, random_state=2022)

Print the sample
print(attrition_strat)

Calculate the Education level proportions from attrition_strat
education_counts_strat = attrition_strat['Education'].value_counts(normalize=True)

Print education_counts_strat
print(education_counts_strat)

Education
Bachelor 0.389116
Master 0.270748
College 0.191837
Below_College 0.115646
Doctor 0.032653
Name: proportion, dtype: float64

Age Attrition BusinessTravel DailyRate Department \
1191 53 0.0 Travel_Rarely 238 Sales
407 29 0.0 Travel_Frequently 995 Research_Development
1233 59 0.0 Travel_Frequently 1225 Sales
366 37 0.0 Travel_Rarely 571 Research_Development
702 31 0.0 Travel_Frequently 163 Research_Development
...
733 38 0.0 Travel_Frequently 653 Research_Development
1061 44 0.0 Travel_Frequently 602 Human_Resources
1307 41 0.0 Travel_Rarely 1276 Sales
1060 33 0.0 Travel_Rarely 516 Research_Development

30

177 29 0.0 Travel_Rarely 738 Research_Development

DistanceFromHome Education EducationField \
1191 1 Below_College Medical
407 2 Below_College Life_Sciences
1233 1 Below_College Life_Sciences
366 10 Below_College Life_Sciences
702 24 Below_College Technical_Degree
...
733 29 Doctor Life_Sciences
1061 1 Doctor Human_Resources
1307 2 Doctor Life_Sciences
1060 8 Doctor Life_Sciences
177 9 Doctor Other

EnvironmentSatisfaction Gender ... PerformanceRating \
1191 Very_High Female ... Outstanding
407 Low Male ... Excellent
1233 Low Female ... Excellent
366 Very_High Female ... Excellent
702 Very_High Female ... Outstanding
...
733 Very_High Female ... Excellent
1061 Low Male ... Excellent
1307 Medium Female ... Excellent
1060 Very_High Male ... Excellent
177 Medium Male ... Excellent

RelationshipSatisfaction StockOptionLevel TotalWorkingYears \
1191 Very_High 0 18
407 Very_High 1 6
1233 Very_High 0 20
366 Medium 2 6
702 Very_High 0 9
...
733 Very_High 0 10
1061 High 0 14
1307 Medium 1 22
1060 Low 0 14
177 High 0 4

TrainingTimesLastYear WorkLifeBalance YearsAtCompany \
1191 2 Best 14
407 0 Best 6
1233 2 Good 4

31

366 3 Good 5
702 3 Good 5
...
733 2 Better 10
1061 3 Better 10
1307 2 Better 18
1060 6 Better 0
177 2 Better 3

YearsInCurrentRole YearsSinceLastPromotion YearsWithCurrManager
1191 7 8 10
407 4 1 3
1233 3 1 3
366 3 4 3
702 4 1 4
...
733 3 9 9
1061 7 0 2
1307 16 11 8
1060 0 0 0
177 2 2 2

[588 rows x 31 columns]
Education
Bachelor 0.389456
Master 0.270408
College 0.192177
Below_College 0.115646
Doctor 0.032313
Name: proportion, dtype: float64

Note

By grouping then sampling, the size of each group in the sample is representative of the size
of the sample in the population.

0.2.6 Exercise 2.2.2

Equal counts stratified sampling

If one subgroup is larger than another subgroup in the population, but you don’t want to reflect
that difference in your analysis, then you can use equal counts stratified sampling to generate
samples where each subgroup has the same amount of data. For example, if you are analyzing

32

blood types, O is the most common blood type worldwide, but you may wish to have equal amounts
of O, A, B, and AB in your sample.

Instructions

1. Use equal counts stratified sampling on attrition to get 30 employees from each Education
group, setting the seed to 2022.

2. Get the proportion of employees by Education level from attrition_eq.

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Importing the course arrays
attrition = pd.read_feather("datasets/attrition.feather")

Proportion of employees by Education level
education_counts_pop = attrition['Education'].value_counts(normalize=True)

Print education_counts_pop
print(education_counts_pop)

Get 30 employees from each Education group
attrition_eq = attrition.groupby('Education')\
.sample(n=30, random_state=2022)

Print the sample
print(attrition_eq)

Get the proportions from attrition_eq
education_counts_eq = attrition_eq['Education'].value_counts(normalize=True)

Print the results
print(education_counts_eq)

Education
Bachelor 0.389116
Master 0.270748
College 0.191837
Below_College 0.115646
Doctor 0.032653
Name: proportion, dtype: float64

Age Attrition BusinessTravel DailyRate Department \
1191 53 0.0 Travel_Rarely 238 Sales

33

407 29 0.0 Travel_Frequently 995 Research_Development
1233 59 0.0 Travel_Frequently 1225 Sales
366 37 0.0 Travel_Rarely 571 Research_Development
702 31 0.0 Travel_Frequently 163 Research_Development
...
774 33 0.0 Travel_Rarely 922 Research_Development
869 45 0.0 Travel_Rarely 1015 Research_Development
530 32 0.0 Travel_Rarely 120 Research_Development
1049 48 0.0 Travel_Rarely 163 Sales
350 29 1.0 Travel_Rarely 408 Research_Development

DistanceFromHome Education EducationField \
1191 1 Below_College Medical
407 2 Below_College Life_Sciences
1233 1 Below_College Life_Sciences
366 10 Below_College Life_Sciences
702 24 Below_College Technical_Degree
...
774 1 Doctor Medical
869 5 Doctor Medical
530 6 Doctor Life_Sciences
1049 2 Doctor Marketing
350 25 Doctor Technical_Degree

EnvironmentSatisfaction Gender ... PerformanceRating \
1191 Very_High Female ... Outstanding
407 Low Male ... Excellent
1233 Low Female ... Excellent
366 Very_High Female ... Excellent
702 Very_High Female ... Outstanding
...
774 Low Female ... Excellent
869 High Female ... Excellent
530 High Male ... Outstanding
1049 Medium Female ... Excellent
350 High Female ... Excellent

RelationshipSatisfaction StockOptionLevel TotalWorkingYears \
1191 Very_High 0 18
407 Very_High 1 6
1233 Very_High 0 20
366 Medium 2 6
702 Very_High 0 9
...
774 High 1 10

34

869 Low 0 10
530 Low 0 8
1049 Low 1 14
350 Medium 0 6

TrainingTimesLastYear WorkLifeBalance YearsAtCompany \
1191 2 Best 14
407 0 Best 6
1233 2 Good 4
366 3 Good 5
702 3 Good 5
...
774 2 Better 6
869 3 Better 10
530 2 Better 5
1049 2 Better 9
350 2 Best 2

YearsInCurrentRole YearsSinceLastPromotion YearsWithCurrManager
1191 7 8 10
407 4 1 3
1233 3 1 3
366 3 4 3
702 4 1 4
...
774 1 0 5
869 7 1 4
530 4 1 4
1049 7 6 7
350 2 1 1

[150 rows x 31 columns]
Education
Below_College 0.2
College 0.2
Bachelor 0.2
Master 0.2
Doctor 0.2
Name: proportion, dtype: float64

Note

If you want each subgroup to have equal weight in your analysis, then equal counts stratified
sampling is the appropriate technique.

35

0.2.7 Exercise 2.2.3

Weighted sampling

Stratified sampling provides rules about the probability of picking rows from your dataset at the
subgroup level. A generalization of this is weighted sampling, which lets you specify rules about
the probability of picking rows at the row level. The probability of picking any given row is
proportional to the weight value for that row.

Instructions

1. Plot YearsAtCompany from attrition as a histogram with bins of width 1 from 0 to 40.
2. Sample 400 employees from attrition weighted by YearsAtCompany.
3. Plot YearsAtCompany from attrition_weight as a histogram with bins of width 1 from 0

to 40.
4. Which is higher? The mean YearsAtCompany from attrition or the mean YearsAtCompany

from attrition_weight? Answer: The weighted sample mean is around 11, which is higher
than the population mean of around 7. The fact that the two numbers are different means
that the weighted simple random sample is biased.

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Importing the course arrays
attrition = pd.read_feather("datasets/attrition.feather")

Plot YearsAtCompany from attrition_pop as a histogram
attrition['YearsAtCompany'].hist(bins=np.arange(0,41,1))

Sample 400 employees weighted by YearsAtCompany
attrition_weight = attrition.sample(n=400, weights='YearsAtCompany')

Print the sample
print(attrition_weight)

Plot YearsAtCompany from attrition_weight as a histogram
attrition_weight['YearsAtCompany'].hist(bins=np.arange(0, 41, 1))
plt.show()

The mean YearsAtCompany from attrition dataset
print(attrition['YearsAtCompany'].mean())

36

The mean YearsAtCompany from attrition_weight
print(attrition_weight['YearsAtCompany'].mean())

Age Attrition BusinessTravel DailyRate Department \
1036 46 0.0 Travel_Rarely 1277 Sales
489 25 0.0 Travel_Rarely 882 Research_Development
1314 49 0.0 Travel_Rarely 174 Sales
1441 50 0.0 Travel_Frequently 1234 Research_Development
1152 36 0.0 Travel_Rarely 1223 Research_Development
...
795 33 1.0 Travel_Rarely 527 Research_Development
939 38 0.0 Travel_Rarely 1009 Sales
886 41 0.0 Non-Travel 552 Human_Resources
1165 35 0.0 Travel_Rarely 1296 Research_Development
538 26 1.0 Travel_Rarely 950 Sales

DistanceFromHome Education EducationField \
1036 2 Bachelor Life_Sciences
489 19 Below_College Medical
1314 8 Master Technical_Degree
1441 20 Doctor Medical
1152 8 Bachelor Technical_Degree
...
795 1 Master Other
939 2 College Life_Sciences
886 4 Bachelor Human_Resources
1165 5 Master Technical_Degree
538 4 Master Marketing

EnvironmentSatisfaction Gender ... PerformanceRating \
1036 High Male ... Excellent
489 Very_High Male ... Excellent
1314 Very_High Male ... Excellent
1441 Medium Male ... Excellent
1152 High Female ... Excellent
...
795 Very_High Male ... Excellent
939 Medium Female ... Excellent
886 High Male ... Excellent
1165 High Male ... Excellent
538 Very_High Male ... Excellent

RelationshipSatisfaction StockOptionLevel TotalWorkingYears \
1036 Medium 1 13
489 High 3 7

37

1314 Medium 1 22
1441 High 1 32
1152 Medium 3 17
...
795 High 0 10
939 Very_High 1 11
886 Medium 1 10
1165 Very_High 0 17
538 Medium 0 8

TrainingTimesLastYear WorkLifeBalance YearsAtCompany \
1036 5 Good 10
489 6 Good 3
1314 3 Better 9
1441 3 Better 30
1152 2 Better 17
...
795 2 Good 10
939 3 Better 7
886 4 Better 3
1165 5 Better 16
538 0 Better 8

YearsInCurrentRole YearsSinceLastPromotion YearsWithCurrManager
1036 6 0 3
489 2 1 2
1314 8 2 3
1441 8 12 13
1152 14 12 8
...
795 9 7 8
939 7 1 7
886 2 1 2
1165 6 0 13
538 7 7 4

[400 rows x 31 columns]

38

0 5 10 15 20 25 30 35 40
0

25

50

75

100

125

150

175

200

7.0081632653061225
10.95

0.2.8 Chapter 2.3: Cluster sampling

One problem with stratified sampling is that we need to collect data from every subgroup. In cases
where collecting data is expensive, for example, when we have to physically travel to a location to
collect it, it can make our analysis prohibitively expensive. There’s a cheaper alternative called
cluster sampling.

Stratified sampling vs. cluster sampling

The stratified sampling approach was to split the population into subgroups, then use simple
random sampling on each of them. Cluster sampling means that we limit the number of subgroups
in the analysis by picking a few of them with simple random sampling. We then perform simple
random sampling on each subgroup as before.

Varieties of coffee

Let’s return to the coffee dataset and look at the varieties of coffee. In this image, each bean
represents the whole subgroup rather than an individual coffee, and there are twenty-eight of them.
To extract unique varieties, we use the .unique method. This returns an array, so wrapping it in
the list function creates a list of unique varieties. Let’s suppose that it’s expensive to work with
all of the different varieties. Enter cluster sampling.

39

Stage 1: sampling for subgroups

The first stage of cluster sampling is to randomly cut down the number of varieties, and we do
this by randomly selecting them. Here, we’ve used the random.sample function from the random
package to get three varieties, specified using the argument k.

Stage 2: sampling each group

The second stage of cluster sampling is to perform simple random sampling on each of the three
varieties we randomly selected. We first filter the dataset for rows where the variety is one of
the three selected, using the .isin method. To ensure that the isin filtering removes levels with
zero rows, we apply the cat.remove_unused_categories method on the Series of focus, which
is variety here. If we exclude this method, we might receive an error when sampling by variety
level. The pandas code is the same as for stratified sampling. Here, we’ve opted for equal counts
sampling, with five rows from each remaining variety.

Stage 2 output

Here’s the first few columns of the result. Notice that there are the fifteen rows, which we’d expect
from sampling five rows from three varieties.

Multistage sampling

Note that we had two stages in the cluster sampling. We randomly sampled the subgroups to
include, then we randomly sampled rows from those subgroups. Cluster sampling is a special case
of multistage sampling. It’s possible to use more than two stages. A common example is national
surveys, which can include several levels of administrative regions, like states, counties, cities, and
neighborhoods.

0.2.9 Exercise 2.3.1

Performing cluster sampling

Now that you know when to use cluster sampling, it’s time to put it into action. In this exercise,
you’ll explore the JobRole column of the attrition dataset. You can think of each job role as a
subgroup of the whole population of employees.

Use a seed of 19790801 to set the seed with random.seed().

40

Instructions

1.

• Create a list of unique JobRole values from attrition, and assign to job_roles_pop.
• Randomly sample four JobRole values from job_roles_pop.

2. Subset attrition_pop for the sampled job roles by filtering for rows where JobRole is in
job_roles_samp.

3.

• Remove any unused categories from JobRole.
• For each job role in the filtered dataset, take a random sample of ten rows, setting the seed

to 2022.

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Importing the course arrays
attrition = pd.read_feather("datasets/attrition.feather")

Set the seed
random.seed(19790801)

Create a list of unique JobRole values
job_roles_pop = list(attrition['JobRole'].unique())

Randomly sample four JobRole values
job_roles_samp = random.sample(job_roles_pop, k=4)

Print the result
print(job_roles_samp)

Filter for rows where JobRole is in job_roles_samp
jobrole_condition = attrition['JobRole'].isin(job_roles_samp)
attrition_filtered = attrition[jobrole_condition]

Print the result
print(attrition_filtered)

Remove categories with no rows
attrition_filtered['JobRole'] = attrition_filtered['JobRole'].cat.remove_unused_categories()

41

Randomly sample 10 employees from each sampled job role
attrition_clust = attrition_filtered.groupby('JobRole')\
.sample(n=10, random_state=2022)

Print the sample
print(attrition_clust)

['Research_Director', 'Research_Scientist', 'Human_Resources', 'Manager']
Age Attrition BusinessTravel DailyRate Department \

0 21 0.0 Travel_Rarely 391 Research_Development
5 27 0.0 Non-Travel 443 Research_Development
6 18 0.0 Non-Travel 287 Research_Development
10 18 0.0 Non-Travel 1431 Research_Development
17 31 0.0 Travel_Rarely 1082 Research_Development
...
1462 54 0.0 Travel_Rarely 584 Research_Development
1464 55 0.0 Travel_Rarely 452 Research_Development
1465 55 0.0 Travel_Rarely 1117 Sales
1466 58 0.0 Non-Travel 350 Sales
1469 58 1.0 Travel_Rarely 286 Research_Development

DistanceFromHome Education EducationField EnvironmentSatisfaction \
0 15 College Life_Sciences High
5 3 Bachelor Medical Very_High
6 5 College Life_Sciences Medium
10 14 Bachelor Medical Medium
17 1 Master Medical High
...
1462 22 Doctor Medical Medium
1464 1 Bachelor Medical Very_High
1465 18 Doctor Life_Sciences Low
1466 2 Bachelor Medical Medium
1469 2 Master Life_Sciences Very_High

Gender ... PerformanceRating RelationshipSatisfaction \
0 Male ... Excellent Very_High
5 Male ... Excellent High
6 Male ... Excellent Very_High
10 Female ... Excellent High
17 Male ... Excellent Medium
...
1462 Female ... Outstanding High
1464 Male ... Excellent High
1465 Female ... Outstanding Very_High

42

1466 Male ... Outstanding Very_High
1469 Male ... Excellent Very_High

StockOptionLevel TotalWorkingYears TrainingTimesLastYear \
0 0 0 6
5 3 0 6
6 0 0 2
10 0 0 4
17 0 1 4
...
1462 1 36 6
1464 0 37 2
1465 0 37 2
1466 1 37 0
1469 0 40 2

WorkLifeBalance YearsAtCompany YearsInCurrentRole \
0 Better 0 0
5 Good 0 0
6 Better 0 0
10 Bad 0 0
17 Better 1 1
...
1462 Better 10 8
1464 Better 36 10
1465 Better 10 9
1466 Good 16 9
1469 Better 31 15

YearsSinceLastPromotion YearsWithCurrManager
0 0 0
5 0 0
6 0 0
10 0 0
17 1 0
...
1462 4 7
1464 4 13
1465 7 7
1466 14 14
1469 13 8

[526 rows x 31 columns]
Age Attrition BusinessTravel DailyRate Department \

1348 44 1.0 Travel_Rarely 1376 Human_Resources

43

886 41 0.0 Non-Travel 552 Human_Resources
983 39 0.0 Travel_Rarely 141 Human_Resources
88 27 1.0 Travel_Frequently 1337 Human_Resources
189 34 0.0 Travel_Rarely 829 Human_Resources
160 24 0.0 Travel_Frequently 897 Human_Resources
839 46 0.0 Travel_Rarely 991 Human_Resources
966 30 0.0 Travel_Rarely 1240 Human_Resources
162 28 0.0 Non-Travel 280 Human_Resources
1231 37 0.0 Travel_Rarely 1239 Human_Resources
1375 44 0.0 Travel_Rarely 1315 Research_Development
1462 54 0.0 Travel_Rarely 584 Research_Development
1316 45 0.0 Travel_Frequently 364 Research_Development
1356 48 0.0 Travel_Frequently 117 Research_Development
1387 48 0.0 Non-Travel 1262 Research_Development
1321 54 0.0 Non-Travel 142 Human_Resources
1266 50 0.0 Travel_Rarely 1452 Research_Development
1330 46 0.0 Travel_Rarely 406 Sales
1052 59 0.0 Travel_Rarely 1089 Sales
1449 52 0.0 Travel_Rarely 699 Research_Development
1439 58 0.0 Travel_Rarely 1055 Research_Development
1339 58 0.0 Travel_Frequently 1216 Research_Development
1426 49 0.0 Travel_Rarely 1245 Research_Development
1415 48 0.0 Travel_Rarely 1224 Research_Development
1322 51 0.0 Travel_Rarely 684 Research_Development
1284 40 0.0 Travel_Rarely 1308 Research_Development
1149 37 0.0 Travel_Rarely 161 Research_Development
1126 42 0.0 Travel_Rarely 810 Research_Development
1374 46 0.0 Travel_Rarely 1009 Research_Development
1050 33 0.0 Travel_Rarely 213 Research_Development
86 26 0.0 Travel_Rarely 482 Research_Development
930 52 1.0 Travel_Rarely 723 Research_Development
860 37 0.0 Travel_Rarely 674 Research_Development
36 20 1.0 Travel_Rarely 1362 Research_Development
997 32 0.0 Travel_Rarely 824 Research_Development
1358 45 0.0 Travel_Rarely 1339 Research_Development
993 41 0.0 Travel_Frequently 1200 Research_Development
421 34 0.0 Travel_Rarely 181 Research_Development
789 28 1.0 Travel_Rarely 654 Research_Development
94 36 1.0 Travel_Rarely 318 Research_Development

DistanceFromHome Education EducationField \
1348 1 College Medical
886 4 Bachelor Human_Resources
983 3 Bachelor Human_Resources
88 22 Bachelor Human_Resources

44

189 3 College Human_Resources
160 10 Bachelor Medical
839 1 College Life_Sciences
966 9 Bachelor Human_Resources
162 1 College Life_Sciences
1231 8 College Other
1375 3 Master Other
1462 22 Doctor Medical
1316 25 Bachelor Medical
1356 22 Bachelor Medical
1387 1 Master Medical
1321 26 Bachelor Human_Resources
1266 11 Bachelor Life_Sciences
1330 3 Below_College Marketing
1052 1 College Technical_Degree
1449 1 Master Life_Sciences
1439 1 Bachelor Medical
1339 15 Master Life_Sciences
1426 18 Master Life_Sciences
1415 10 Bachelor Life_Sciences
1322 6 Bachelor Life_Sciences
1284 14 Bachelor Medical
1149 10 Bachelor Life_Sciences
1126 23 Doctor Life_Sciences
1374 2 Bachelor Life_Sciences
1050 7 Bachelor Medical
86 1 College Life_Sciences
930 8 Master Medical
860 13 Bachelor Medical
36 10 Below_College Medical
997 5 College Life_Sciences
1358 7 Bachelor Life_Sciences
993 22 Bachelor Life_Sciences
421 2 Master Medical
789 1 College Life_Sciences
94 9 Bachelor Medical

EnvironmentSatisfaction Gender ... PerformanceRating \
1348 Medium Male ... Excellent
886 High Male ... Excellent
983 High Female ... Excellent
88 Low Female ... Excellent
189 High Male ... Excellent
160 Low Male ... Excellent
839 Very_High Female ... Excellent

45

966 High Male ... Excellent
162 High Male ... Excellent
1231 High Male ... Excellent
1375 Very_High Male ... Excellent
1462 Medium Female ... Outstanding
1316 Medium Female ... Outstanding
1356 Very_High Female ... Excellent
1387 Low Male ... Outstanding
1321 Very_High Female ... Excellent
1266 High Female ... Excellent
1330 Low Male ... Excellent
1052 Medium Male ... Excellent
1449 High Male ... Excellent
1439 Very_High Female ... Outstanding
1339 Low Male ... Excellent
1426 Very_High Male ... Excellent
1415 Very_High Male ... Excellent
1322 Low Male ... Excellent
1284 High Male ... Excellent
1149 High Female ... Outstanding
1126 Low Female ... Excellent
1374 Low Male ... Excellent
1050 High Male ... Excellent
86 Medium Female ... Excellent
930 High Male ... Excellent
860 Low Male ... Excellent
36 Very_High Male ... Excellent
997 Very_High Female ... Excellent
1358 Medium Male ... Excellent
993 Very_High Female ... Excellent
421 Very_High Male ... Excellent
789 Low Female ... Excellent
94 Very_High Male ... Excellent

RelationshipSatisfaction StockOptionLevel TotalWorkingYears \
1348 Very_High 1 24
886 Medium 1 10
983 High 1 12
88 Low 0 1
189 High 1 4
160 Very_High 1 3
839 High 0 10
966 Very_High 0 12
162 Medium 1 3
1231 High 0 19

46

1375 Low 1 26
1462 High 1 36
1316 High 0 22
1356 Medium 1 24
1387 High 0 27
1321 High 0 23
1266 Medium 0 21
1330 Very_High 1 23
1052 High 1 14
1449 Low 1 34
1439 High 1 32
1339 Medium 0 23
1426 High 1 31
1415 Very_High 0 29
1322 High 0 23
1284 Low 0 21
1149 Low 1 16
1126 Medium 0 16
1374 High 0 26
1050 Very_High 0 14
86 High 1 1
930 Low 0 11
860 Low 0 10
36 Very_High 0 1
997 Low 1 12
1358 High 1 25
993 Low 2 12
421 Low 3 6
789 Very_High 0 10
94 Low 1 2

TrainingTimesLastYear WorkLifeBalance YearsAtCompany \
1348 1 Better 20
886 4 Better 3
983 3 Bad 8
88 2 Better 1
189 1 Bad 3
160 2 Better 2
839 3 Best 7
966 2 Bad 11
162 2 Better 3
1231 4 Good 10
1375 2 Best 2
1462 6 Better 10
1316 4 Better 0

47

1356 3 Better 22
1387 3 Good 5
1321 3 Better 5
1266 5 Better 5
1330 3 Better 12
1052 1 Bad 6
1449 5 Better 33
1439 3 Better 9
1339 3 Better 2
1426 5 Better 31
1415 3 Better 22
1322 5 Better 20
1284 2 Best 20
1149 2 Better 16
1126 2 Better 1
1374 2 Bad 3
1050 3 Best 13
86 3 Good 1
930 3 Good 8
860 2 Better 10
36 5 Better 1
997 2 Better 7
1358 2 Better 1
993 4 Good 6
421 3 Better 5
789 4 Better 7
94 0 Good 1

YearsInCurrentRole YearsSinceLastPromotion YearsWithCurrManager
1348 6 3 6
886 2 1 2
983 3 3 6
88 0 0 0
189 2 0 2
160 2 2 1
839 6 5 7
966 9 4 7
162 2 2 2
1231 0 4 7
1375 2 0 1
1462 8 4 7
1316 0 0 0
1356 17 4 7
1387 4 2 1
1321 3 4 4

48

1266 4 4 4
1330 9 4 9
1052 4 0 4
1449 18 11 9
1439 8 1 5
1339 2 2 2
1426 9 0 9
1415 10 12 9
1322 18 15 15
1284 7 4 9
1149 11 6 8
1126 0 0 0
1374 2 0 1
1050 9 3 7
86 0 1 0
930 2 7 7
860 8 3 7
36 0 1 1
997 1 2 5
1358 0 0 0
993 2 3 3
421 0 1 2
789 7 3 7
94 0 0 0

[40 rows x 31 columns]

0.2.10 Chapter 2.4: Comparing sampling methods

Let’s review the various sampling techniques we learned about.

Review of sampling techniques - setup

For convenience, we’ll stick to the six countries with the most coffee varieties that we used before.
This corresponds to eight hundred and eighty rows and eight columns, retrieved using the .shape
attribute.

Review of simple random sampling

Simple random sampling uses .sample with either n or frac set to determine how many rows to
pseudo-randomly choose, given a seed value set with random_state. The simple random sample
returns two hundred and ninety-three rows because we specified frac as one-third, and one-third
of eight hundred and eighty is just over two hundred and ninety-three.

49

Review of stratified sampling

Stratified sampling groups by the country subgroup before performing simple random sampling
on each subgroup. Given each of these top countries have quite a few rows, stratifying produces
the same number of rows as the simple random sample.

Review of cluster sampling

In the cluster sample, we’ve used two out of six countries to roughly mimic frac equals one-third
from the other sample types. Setting n equal to one-sixth of the total number of rows gives
roughly equal sample sizes in each of the two subgroups. Using .shape again, we see that this
cluster sample has close to the same number of rows: two-hundred-ninety-two compared to two-
hundred-ninety-three for the other sample types.

Calculating mean cup points

Let’s calculate a population parameter, the mean of the total cup points. When the population
parameter is the mean of a field, it’s often called the population mean. Remember that in real-
life scenarios, we typically wouldn’t know what the population mean is. Since we have it here,
though, we can use this value of eighty-one-point-nine as a gold standard to measure against. Now
we’ll calculate the same value using each of the sampling techniques we’ve discussed. These are
point estimates of the mean, often called sample means. The simple and stratified sample means
are really close to the population mean. Cluster sampling isn’t quite as close, but that’s typical.
Cluster sampling is designed to give us an answer that’s almost as good while using less data.

Mean cup points by country: simple random

Here’s a slightly more complicated calculation of the mean total cup points for each country. We
group by country before calculating the mean to return six numbers. So how do the numbers
from the simple random sample compare? The sample means are pretty close to the population
means.

Mean cup points by country: stratified

The same is true of the sample means from the stratified technique. Each sample mean is relatively
close to the population mean.

Mean cup points by country: cluster

With cluster sampling, while the sample means are pretty close to the population means, the
obvious limitation is that we only get values for the two countries that were included in the
sample. If the mean cup points for each country is an important metric in our analysis, cluster
sampling would be a bad idea.

50

0.2.11 Exercise 2.4.1

3 kinds of sampling

You’re going to compare the performance of point estimates using simple, stratified, and cluster
sampling. Before doing that, you’ll have to set up the samples.

You’ll use the RelationshipSatisfaction column of the attrition dataset, which catego-
rizes the employee’s relationship with the company. It has four levels: Low, Medium, High, and
Very_High.

Instructions

1. Perform simple random sampling on attrition to get one-quarter of the population, setting
the seed to 2022.

2. Perform stratified sampling on attrition to sample one-quarter of each RelationshipSatisfaction
group, setting the seed to 2022.

3. Create a list of unique values from attrition’s RelationshipSatisfaction column. Ran-
domly sample satisfaction_unique to get two values. Subset the population for rows where
RelationshipSatisfaction is in satisfaction_samp and clear any unused categories from
RelationshipSatisfaction; assign to attrition_clust_prep. Perform cluster sampling
on the selected satisfaction groups, sampling one quarter of the population and setting the
seed to 2022.

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Importing the course arrays
attrition = pd.read_feather("datasets/attrition.feather")

Perform simple random sampling to get 0.25 of the population
attrition_srs = attrition.sample(frac=1/4, random_state=2022)

Perform stratified sampling to get 0.25 of each relationship group
attrition_strat = attrition.groupby('RelationshipSatisfaction')\
.sample(frac=1/4, random_state=2022)

Create a list of unique RelationshipSatisfaction values
satisfaction_unique = list(attrition['RelationshipSatisfaction'].unique())

Randomly sample 2 unique satisfaction values
satisfaction_samp = random.sample(satisfaction_unique, k=2)

51

Filter for satisfaction_samp and clear unused categories from RelationshipSatisfaction
satis_condition = attrition['RelationshipSatisfaction'].isin(satisfaction_samp)
attrition_clust_prep = attrition[satis_condition]
attrition_clust_prep['RelationshipSatisfaction'] = attrition_clust_prep['RelationshipSatisfaction'].cat.remove_unused_categories()

Perform cluster sampling on the selected group, getting 0.25 of attrition_clust_prep
attrition_clust = attrition_clust_prep.groupby("RelationshipSatisfaction")\
.sample(n=len(attrition) // 6, random_state=2022)

print(attrition_clust)

Age Attrition BusinessTravel DailyRate Department \
1381 45 1.0 Travel_Rarely 1449 Sales
1357 42 0.0 Travel_Rarely 300 Research_Development
924 30 0.0 Travel_Rarely 288 Research_Development
1224 46 0.0 Travel_Rarely 1003 Research_Development
1277 48 0.0 Travel_Rarely 1236 Research_Development
...
357 27 0.0 Travel_Rarely 798 Research_Development
424 44 1.0 Travel_Frequently 429 Research_Development
1182 36 0.0 Travel_Frequently 884 Research_Development
1055 34 0.0 Travel_Frequently 669 Research_Development
962 34 0.0 Travel_Rarely 1031 Research_Development

DistanceFromHome Education EducationField EnvironmentSatisfaction \
1381 2 Bachelor Marketing Low
1357 2 Bachelor Life_Sciences Low
924 2 Bachelor Life_Sciences High
1224 8 Master Life_Sciences Very_High
1277 1 Master Life_Sciences Very_High
...
357 6 Master Medical Low
424 1 College Medical High
1182 23 College Medical High
1055 1 Bachelor Medical Very_High
962 6 Master Life_Sciences High

Gender ... PerformanceRating RelationshipSatisfaction \
1381 Female ... Excellent Low
1357 Male ... Excellent Low
924 Male ... Excellent Low
1224 Female ... Outstanding Low
1277 Female ... Excellent Low
...
357 Female ... Excellent High

52

424 Male ... Excellent High
1182 Male ... Excellent High
1055 Male ... Outstanding High
962 Female ... Excellent High

StockOptionLevel TotalWorkingYears TrainingTimesLastYear \
1381 0 26 2
1357 0 24 2
924 3 11 3
1224 3 19 2
1277 1 21 3
...
357 2 6 5
424 3 6 2
1182 1 17 3
1055 0 14 3
962 1 12 3

WorkLifeBalance YearsAtCompany YearsInCurrentRole \
1381 Better 24 10
1357 Good 22 6
924 Better 11 10
1224 Better 16 13
1277 Bad 3 2
...
357 Good 5 3
424 Good 5 3
1182 Better 5 2
1055 Better 13 9
962 Better 1 0

YearsSinceLastPromotion YearsWithCurrManager
1381 1 11
1357 4 14
924 10 8
1224 1 7
1277 0 2
...
357 0 3
424 2 3
1182 0 3
1055 4 9
962 0 0

[490 rows x 31 columns]

53

0.2.12 Exercise 2.4.4

Comparing point estimates

Now that you have three types of sample (simple, stratified, and cluster), you can compare point
estimates from each sample to the population parameter. That is, you can calculate the same
summary statistic on each sample and see how it compares to the summary statistic for the
population.

Here, we’ll look at how satisfaction with the company affects whether or not the employee leaves
the company. That is, you’ll calculate the proportion of employees who left the company (they
have an Attrition value of 1) for each value of RelationshipSatisfaction.

Instructions

1. Group attrition by RelationshipSatisfaction levels and calculate the mean of Attrition
for each level.

2. Calculate the proportion of employee attrition for each relationship satisfaction group, this
time on the simple random sample, attrition_srs.

3. Calculate the proportion of employee attrition for each relationship satisfaction group, this
time on the stratified sample, attrition_strat.

4. Calculate the proportion of employee attrition for each relationship satisfaction group, this
time on the cluster sample, attrition_clust.

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Importing the course arrays
attrition = pd.read_feather("datasets/attrition.feather")

Perform simple random sampling to get 0.25 of the population
attrition_srs = attrition.sample(frac=1/4, random_state=2022)

Perform stratified sampling to get 0.25 of each relationship group
attrition_strat = attrition.groupby('RelationshipSatisfaction')\
.sample(frac=1/4, random_state=2022)

Mean Attrition by RelationshipSatisfaction group
mean_attrition_pop = attrition.groupby('RelationshipSatisfaction')\
['Attrition'].mean()

Print the result
print(mean_attrition_pop)

54

Calculate the same thing for the simple random sample
mean_attrition_srs = attrition_srs.groupby('RelationshipSatisfaction')\
['Attrition'].mean()

Print the result
print(mean_attrition_srs)

Calculate the same thing for the stratified sample
mean_attrition_strat = attrition_strat.groupby('RelationshipSatisfaction')\
['Attrition'].mean()

Print the result
print(mean_attrition_strat)

Calculate the same thing for the cluster sample
mean_attrition_clust = attrition_clust.groupby('RelationshipSatisfaction')\
['Attrition'].mean()

Print the result
print(mean_attrition_clust)

RelationshipSatisfaction
Low 0.206522
Medium 0.148515
High 0.154684
Very_High 0.148148
Name: Attrition, dtype: float64
RelationshipSatisfaction
Low 0.134328
Medium 0.164179
High 0.160000
Very_High 0.155963
Name: Attrition, dtype: float64
RelationshipSatisfaction
Low 0.144928
Medium 0.078947
High 0.165217
Very_High 0.129630
Name: Attrition, dtype: float64
RelationshipSatisfaction
Low 0.191837
High 0.134694

55

Name: Attrition, dtype: float64

0.3 CHAPTER 3: Sampling Distributions

Let’s test your sampling. In this chapter, you’ll discover how to quantify the accuracy of sample
statistics using relative errors, and measure variation in your estimates by generating sampling
distributions.

0.3.1 Chapter 3.1: Relative error of point estimates

Let’s see how the size of the sample affects the accuracy of the point estimates we calculate.

Sample size is number of rows

The sample size, calculated here with the len function, is the number of observations, that is, the
number of rows in the sample. That’s true whichever method we use to create the sample. We’ll
stick to looking at simple random sampling since it works well in most cases and it’s easier to
reason about.

Various sample sizes

Let’s calculate a population parameter, the mean cup points of the coffees. It’s around eighty-two-
point-one-five. This is our gold standard to compare against. If we take a sample size of ten, the
point estimate of this parameter is wrong by about point-eight-eight. Increasing the sample size
to one hundred gets us closer; the estimate is only wrong by about point-three-four. Increasing
the sample size further to one thousand brings the estimate to about point-zero-three away from
the population parameter. In general, larger sample sizes will give us more accurate results.

Relative errors

For any of these sample sizes, we want to compare the population mean to the sample mean. This
is the same code we just saw, but with the numerical sample size replaced with a variable named
sample_size. The most common metric for assessing the difference between the population and
a sample mean is the relative error. The relative error is the absolute difference between the two
numbers; that is, we ignore any minus signs, divided by the population mean. Here, we also
multiply by one hundred to make it a percentage.

56

Relative error vs. sample size

Here’s a line plot of relative error versus sample size. We see that the relative error decreases as
the sample size increases, and beyond that, the plot has other important properties. Firstly, the
blue line is really noisy, particularly for small sample sizes. If our sample size is small, the sample
mean we calculate can be wildly different by adding one or two more random rows to the sample.
Secondly, the amplitude of the line is quite steep, to begin with. When we have a small sample
size, adding just a few more samples can give us much better accuracy. Further to the right of the
plot, the line is less steep. If we already have a large sample size, adding a few more rows to the
sample doesn’t bring as much benefit. Finally, at the far right of the plot, where the sample size
is the whole population, the relative error decreases to zero.

0.3.2 Exercise 3.1.1

Calculating relative errors

The size of the sample you take affects how accurately the point estimates reflect the corresponding
population parameter. For example, when you calculate a sample mean, you want it to be close
to the population mean. However, if your sample is too small, this might not be the case.

The most common metric for assessing accuracy is relative error. This is the absolute difference
between the population parameter and the point estimate, all divided by the population parameter.
It is sometimes expressed as a percentage.

Instructions

1. Generate a simple random sample from attrition_pop of fifty rows, setting the seed to 2022.

• Calculate the mean employee Attrition in the sample.
• Calculate the relative error between mean_attrition_srs50 and mean_attrition_pop as a

percentage.

2. Calculate the relative error percentage again. This time, use a simple random sample of one
hundred rows of attrition.

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Importing the course arrays
attrition = pd.read_feather("datasets/attrition.feather")

Population Attrtion mean
mean_attrition_pop = attrition['Attrition'].mean()

57

Print the result
print(mean_attrition_pop)

Generate a simple random sample of 50 rows, with seed 2022
attrition_srs50 = attrition.sample(n=50, random_state = 2022)

Calculate the mean employee attrition in the sample
mean_attrition_srs50 = attrition_srs50['Attrition'].mean()

Calculate the relative error percentage
rel_error_pct50 = 100 * abs(mean_attrition_pop - mean_attrition_srs50)/mean_attrition_pop

Print rel_error_pct50
print(rel_error_pct50)

Generate a simple random sample of 100 rows, with seed 2022
attrition_srs100 = attrition.sample(n=100, random_state = 2022)

Calculate the mean employee attrition in the sample
mean_attrition_srs100 = attrition_srs100['Attrition'].mean()

Calculate the relative error percentage
rel_error_pct100 = 100 * abs(mean_attrition_pop - mean_attrition_srs100)/mean_attrition_pop

Print rel_error_pct100
print(rel_error_pct100)

0.16122448979591836
62.78481012658227
6.962025316455695

0.3.3 Chapter 3.2: Creating a sampling distribution

We just saw how point estimates like the sample mean will vary depending on which rows end up
in the sample.

Same code, different answer

For example, this same code to calculate the mean cup points from a simple random sample of
thirty coffees gives a slightly different answer each time. Let’s try to visualize and quantify this
variation.

58

Same code, 1000 times

A for loop lets us run the same code many times. It’s especially useful for situations like this where
the result contains some randomness. We start by creating an empty list to store the means. Then,
we set up the for loop to repeatedly sample 30 coffees from coffee_ratings a total of 1000 times,
calculating the mean cup points each time. After each calculation, we append the result, also
called a replicate, to the list. Each time the code is run, we get one sample mean, so running the
code a thousand times generates a list of one thousand sample means.

Distribution of sample means for size 30

The one thousand sample means form a distribution of sample means. To visualize a distribution,
the best plot is often a histogram. Here we can see that most of the results lie between eighty-one
and eighty-three, and they roughly follow a bell-shaped curve, like a normal distribution. There’s
an important piece of jargon we need to know here. A distribution of replicates of sample means,
or other point estimates, is known as a sampling distribution.

Different sample sizes

Here are histograms from running the same code again with different sample sizes. When we
decrease the original sample size of thirty to six, we can see from the x-values that the range of
the results is broader. The bulk of the results now lie between eighty and eighty-four. On the
other hand, increasing the sample size to one hundred and fifty results in a much narrower range.
Now most of the results are between eighty-one-point-eight and eighty-two-point-six. As we saw
previously, bigger sample sizes give us more accurate results. By replicating the sampling many
times, as we’ve done here, we can quantify that accuracy.

0.3.4 Exercise 3.2.1

Replicating samples

When you calculate a point estimate such as a sample mean, the value you calculate depends
on the rows that were included in the sample. That means that there is some randomness in
the answer. In order to quantify the variation caused by this randomness, you can create many
samples and calculate the sample mean (or another statistic) for each sample.

Instructions

1. Replicate the provided code so that it runs 500 times. Assign the resulting list of sample
means to mean_attritions.

2. Draw a histogram of the mean_attritions list with 16 bins.

59

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Importing the course arrays
attrition = pd.read_feather("datasets/attrition.feather")

Create an empty list
mean_attritions = []
Loop 500 times to create 500 sample means
for i in range(500):

mean_attritions.append(
attrition.sample(n=60)['Attrition'].mean()

)

Print out the first few entries of the list
print(mean_attritions[0:5])

Create a histogram of the 500 sample means
plt.hist(mean_attritions, bins=16)
plt.show()

[0.13333333333333333, 0.26666666666666666, 0.11666666666666667, 0.15, 0.11666666666666667]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

20

40

60

80

100

120

140

60

0.3.5 Chapter 3.3: Approximate sampling distributions

In the last exercise, we saw that while increasing the number of replicates didn’t affect the relative
error of the sample means; it did result in a more consistent shape to the distribution.

4 dice

Let’s consider the case of four six-sided dice rolls. We can generate all possible combinations of
rolls using the expand_grid function, which is defined in the pandas documentation, and uses
the itertools package. There are six to the power four, or one-thousand-two-hundred-ninety-six
possible dice roll combinations.

Mean roll

Let’s consider the mean of the four rolls by adding a column to our DataFrame called mean_roll.
mean_roll ranges from 1, when four ones are rolled, to 6, when four sixes are rolled.

Exact sampling distribution

Since the mean roll takes discrete values instead of continuous values, the best way to see the
distribution of mean_roll is to draw a bar plot. First, we convert mean_roll to a categorical
by setting its type to category. We are interested in the counts of each value, so we use dot-
value_counts, passing the sort equals False argument. This ensures the x-axis ranges from one to
six instead of sorting the bars by frequency. Chaining .plot to value_counts, and setting kind to
"bar", produces a bar plot of the mean roll distribution. This is the exact sampling distribution
of the mean roll because it contains every single combination of die rolls.

The number of outcomes increases fast

If we increase the number of dice in our scenario, the number of possible outcomes increases by a
factor of six each time. These values can be shown by creating a DataFrame with two columns:
n_dice, ranging from 1 to 100, and n_outcomes, which is the number of possible outcomes, cal-
culated using six to the power of the number of dice. With just one hundred dice, the number of
outcomes is about the same as the number of atoms in the universe: six-point-five times ten to
the seventy-seventh power. Long before you start dealing with big datasets, it becomes computa-
tionally impossible to calculate the exact sampling distribution. That means we need to rely on
approximations.

Simulating the mean of four dice rolls

We can generate a sample mean of four dice rolls using NumPy’s random.choice method, speci-
fying size as four. This will randomly choose values from a specified list, in this case, four values
from the numbers one to six, which is created using a range from one to seven wrapped in the list
function. Notice that we set replace equals True because we can roll the same number several
times.

61

Simulating the mean of four dice rolls

Then we use a for loop to generate lots of sample means, in this case, one thousand. We again
use the .append method to populate the sample means list with our simulated sample means.
The output contains a sampling of many of the same values we saw with the exact sampling
distribution.

Approximate sampling distribution

Here’s a histogram of the approximate sampling distribution of mean rolls. This time, it uses
the simulated rather than the exact values. It’s known as an approximate sampling distribution.
Notice that although it isn’t perfect, it’s pretty close to the exact sampling distribution. Usually,
we don’t have access to the whole population, so we can’t calculate the exact sampling distribution.
However, we can feel relatively confident that using an approximation will provide a good guess
as to how the sampling distribution will behave.

0.3.6 Exercise 3.3.1

Exact sampling distribution

To quantify how the point estimate (sample statistic) you are interested in varies, you need to know
all the possible values it can take and how often. That is, you need to know its distribution.

The distribution of a sample statistic is called the sampling distribution. When we can calculate
this exactly, rather than using an approximation, it is known as the exact sampling distribution.

Let’s take another look at the sampling distribution of dice rolls. This time, we’ll look at five
eight-sided dice. (These have the numbers one to eight.)

Instructions

1. Expand a grid representing 5 8-sided dice. That is, create a DataFrame with five columns
from a dictionary, named die1 to die5. The rows should contain all possibilities for throwing
five dice, each numbered 1 to 8.

2. Add a column, mean_roll, to dice, that contains the mean of the five rolls as a categorical.
3. Create a bar plot of the mean_roll categorical column, so it displays the count of each

mean_roll in increasing order from 1.0 to 8.0.

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Function to create a grid of all possible combinations
def expand_grid(dictionary):

62

from itertools import product
return pd.DataFrame([row for row in product(*dictionary.values())], columns=dictionary.keys())

Expand a grid representing 5 8-sided dice
dice = expand_grid(

{'die1': range(1, 9),
'die2': range(1, 9),
'die3': range(1, 9),
'die4': range(1, 9),
'die5': range(1, 9)}

)

Print the result
print(dice)

Add a column of mean rolls and convert to a categorical
dice['mean_roll'] = (dice['die1']+ dice['die2']+ dice['die3']+ dice['die4']+ dice['die5'])/5

dice['mean_roll'] = dice['mean_roll'].astype('category')

Print result
print(dice)

Draw a bar plot of mean_roll
dice['mean_roll'].value_counts(sort=False).plot(kind='bar')
plt.show()

die1 die2 die3 die4 die5
0 1 1 1 1 1
1 1 1 1 1 2
2 1 1 1 1 3
3 1 1 1 1 4
4 1 1 1 1 5
...
32763 8 8 8 8 4
32764 8 8 8 8 5
32765 8 8 8 8 6
32766 8 8 8 8 7
32767 8 8 8 8 8

[32768 rows x 5 columns]
die1 die2 die3 die4 die5 mean_roll

0 1 1 1 1 1 1.0
1 1 1 1 1 2 1.2

63

2 1 1 1 1 3 1.4
3 1 1 1 1 4 1.6
4 1 1 1 1 5 1.8
...
32763 8 8 8 8 4 7.2
32764 8 8 8 8 5 7.4
32765 8 8 8 8 6 7.6
32766 8 8 8 8 7 7.8
32767 8 8 8 8 8 8.0

[32768 rows x 6 columns]

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

4.
2

4.
4

4.
6

4.
8

5.
0

5.
2

5.
4

5.
6

5.
8

6.
0

6.
2

6.
4

6.
6

6.
8

7.
0

7.
2

7.
4

7.
6

7.
8

8.
0

mean_roll

0

500

1000

1500

2000

2500

0.3.7 Exercise 3.3.2

Generating an approximate sampling distribution

Calculating the exact sampling distribution is only possible in very simple situations. With just
five eight-sided dice, the number of possible rolls is 8**5, which is over thirty thousand. When
the dataset is more complicated, for example, where a variable has hundreds or thousands of
categories, the number of possible outcomes becomes too difficult to compute exactly.

In this situation, you can calculate an approximate sampling distribution by simulating the exact
sampling distribution. That is, you can repeat a procedure over and over again to simulate both
the sampling process and the sample statistic calculation process.

64

Instructions

1. Sample one to eight, five times, with replacement. Assign to five_rolls.

• Calculate the mean of five_rolls.

2. Replicate the sampling code 1000 times, assigning each result to the list sample_means_1000.
3. Plot sample_means_1000 as a histogram with 20 bins.

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Sample one to eight, five times, with replacement
five_rolls = np.random.choice(list(range(1, 9)), size=5, replace=True)

Print the mean of five_rolls
print(five_rolls.mean())

Replicate the sampling code 1000 times
sample_means_1000 = []
for i in range(1000):

sample_means_1000.append(
np.random.choice(list(range(1, 9)), size=5, replace=True).mean()

)

Print the first 10 entries of the result
print(sample_means_1000[0:10])

Draw a histogram of sample_means_1000 with 20 bins
plt.hist(sample_means_1000, bins=20)
plt.show()

4.8
[4.6, 5.0, 5.2, 4.2, 3.8, 5.6, 4.8, 4.8, 4.2, 5.2]

65

2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

0.3.8 Chapter 3.4: Standard errors and the Central Limit Theorem

The Gaussian distribution (also known as the normal distribution) plays an important role in
statistics. Its distinctive bell-shaped curve has been cropping up throughout this course.

Sampling distribution of mean cup points

Here are approximate sampling distributions of the mean cup points from the coffee dataset. Each
histogram shows five thousand replicates, with different sample sizes in each case. Look at the
x-axis labels. We already saw how increasing the sample size results in greater accuracy in our
estimates of the population parameter, so the width of the distribution shrinks as the sample size
increases. When the sample size is five, the x-axis ranges from seventy-six to eighty-six, whereas,
for a sample size of three hundred and twenty, the range is from eighty-one-point-six to eighty-
two-point-six. Now, look at the shape of each distribution. As the sample size increases, we can
see that the shape of the curve gets closer and closer to being a normal distribution. At sample
size five, the curve is only a very loose approximation since it isn’t very symmetric. By sample
size eighty, it is a very reasonable approximation.

Consequences of the central limit theorem

What we just saw is, in essence, what the central limit theorem tells us. The means of indepen-
dent samples have normal distributions. Then, as the sample size increases, we see two things.
The distribution of these averages gets closer to being normal, and the width of this sampling
distribution gets narrower.

66

Population & sampling distribution means

Recall the population parameter of the mean cup points. We’ve seen this calculation before, and
its value is eighty-two-point-one-five. We can also calculate summary statistics on our sampling
distributions to see how they compare. For each of our four sampling distributions, if we take the
mean of our sample means, we can see that we get values that are pretty close to the population
parameter that the sampling distributions are trying to estimate.

Population & sampling distribution standard deviations

Now let’s consider the standard deviation of the population cup points. It’s about two-point-seven.
By comparison, if we take the standard deviation of the sample means from each of the sampling
distributions using NumPy, we get much smaller numbers, and they decrease as the sample size
increases. Note that when we are calculating a population standard deviation with pandas .std,
we must specify ddof equals zero, as .std calculates a sample standard deviation by default.
When we are calculating a standard deviation on a sample of the population using NumPy’s std
function, like in these calculations on the sampling distribution, we must specify a ddof of one.
So what are these smaller standard deviation values?

Population mean over square root sample size

One other consequence of the central limit theorem is that if we divide the population standard
deviation, in this case around 2.7, by the square root of the sample size, we get an estimate of the
standard deviation of the sampling distribution for that sample size. It isn’t exact because of the
randomness involved in the sampling process, but it’s pretty close.

Standard error

We just saw the impact of the sample size on the standard deviation of the sampling distribution.
This standard deviation of the sampling distribution has a special name: the standard error.
It is useful in a variety of contexts, from estimating population standard deviation to setting
expectations on what level of variability we would expect from the sampling process.

0.3.9 Exercise 3.4.1

Population & sampling distribution means

One of the useful features of sampling distributions is that you can quantify them. Specifically,
you can calculate summary statistics on them. Here, you’ll look at the relationship between the
mean of the sampling distribution and the population parameter’s mean.

Three sampling distributions are provided. For each, the employee attrition dataset was sampled
using simple random sampling, then the mean attrition was calculated. This was done 1000 times
to get a sampling distribution of mean attritions. One sampling distribution used a sample size of
5 for each replicate, one used 50, and one used 500.

67

Instructions

1. Calculate the mean of sampling_distribution_5, sampling_distribution_50, and
sampling_distribution_500 (a mean of sample means).

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Importing the course arrays
attrition = pd.read_feather("datasets/attrition.feather")

Set a seed for reproducibility
random_seed = 2021

Create three empty lists to hold the sampling distributions
sampling_distribution_5 = [] # Sample size of 5
sampling_distribution_50 = [] # Sample size of 50
sampling_distribution_500 = [] # Sample size of 500

Perform biased sampling and calculate mean attrition 1000 times for each sample size
for i in range(1000):

Sample size = 5 (heavier weights toward high attrition)
sampling_distribution_5.append(

attrition.sample(n=5, random_state=random_seed + i)['Attrition'].mean()
)

Sample size = 50 (bias reduces as sample size increases)
sampling_distribution_50.append(

attrition.sample(n=50, random_state=random_seed + i)['Attrition'].mean()
)

Sample size = 500 (approaching unbiased mean)
sampling_distribution_500.append(

attrition.sample(n=500, random_state=random_seed + i)['Attrition'].mean()
)

Optional: Convert the sampling distributions to DataFrame for analysis
sampling_df = pd.DataFrame({

'Sample_Size_5': sampling_distribution_5,
'Sample_Size_50': sampling_distribution_50,
'Sample_Size_500': sampling_distribution_500

})

68

Calculate the mean of the mean attritions for each sampling distribution
mean_of_means_5 = np.mean(sampling_distribution_5)
mean_of_means_50 = np.mean(sampling_distribution_50)
mean_of_means_500 = np.mean(sampling_distribution_500)

Print the results
print(mean_of_means_5)
print(mean_of_means_50)
print(mean_of_means_500)

0.155
0.15998
0.160622

Note

Even for small sample sizes, the mean of the sampling distribution is a good approximation
of the population mean.

0.3.10 Exercise 3.4.2

Population & sampling distribution variation

You just calculated the mean of the sampling distribution and saw how it is an estimate of
the corresponding population parameter. Similarly, as a result of the central limit theorem, the
standard deviation of the sampling distribution has an interesting relationship with the population
parameter’s standard deviation and the sample size.

Instructions

1. Calculate the standard deviation of sampling_distribution_5, sampling_distribution_50,
and sampling_distribution_500 (a standard deviation of sample means).

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Importing the course arrays
attrition = pd.read_feather("datasets/attrition.feather")

Set a seed for reproducibility
random_seed = 2021

69

Create three empty lists to hold the sampling distributions
sampling_distribution_5 = [] # Sample size of 5
sampling_distribution_50 = [] # Sample size of 50
sampling_distribution_500 = [] # Sample size of 500

Perform biased sampling and calculate mean attrition 1000 times for each sample size
for i in range(1000):

Sample size = 5 (heavier weights toward high attrition)
sampling_distribution_5.append(

attrition.sample(n=5, random_state=random_seed + i)['Attrition'].mean()
)

Sample size = 50 (bias reduces as sample size increases)
sampling_distribution_50.append(

attrition.sample(n=50, random_state=random_seed + i)['Attrition'].mean()
)

Sample size = 500 (approaching unbiased mean)
sampling_distribution_500.append(

attrition.sample(n=500, random_state=random_seed + i)['Attrition'].mean()
)

Optional: Convert the sampling distributions to DataFrame for analysis
sampling_df = pd.DataFrame({

'Sample_Size_5': sampling_distribution_5,
'Sample_Size_50': sampling_distribution_50,
'Sample_Size_500': sampling_distribution_500

})

Calculate the std. dev. of the mean attritions for each sampling distribution
sd_of_means_5 = np.std(sampling_distribution_5, ddof = 1)
sd_of_means_50 = np.std(sampling_distribution_50, ddof = 1)
sd_of_means_500 = np.std(sampling_distribution_500, ddof = 1)

Print the results
print(sd_of_means_5)
print(sd_of_means_50)
print(sd_of_means_500)

0.15244093360458746
0.04970785119546479
0.014243454356018837

70

Note

The amount of variation in the sampling distribution is related to the amount of variation
in the population and the sample size. This is another consequence of the Central Limit
Theorem.

0.4 CHAPTER 4: Bootstrap Distributions

You’ll get to grips with resampling to perform bootstrapping and estimate variation in an unknown
population. You’ll learn the difference between sampling distributions and bootstrap distributions
using resampling.

0.4.1 Chapter 4.1: Introduction to bootstrapping

So far, we’ve mostly focused on the idea of sampling without replacement.

With or without

Sampling without replacement is like dealing a pack of cards. When we deal the ace of spades to
one player, we can’t then deal the ace of spades to another player. Sampling with replacement is
like rolling dice. If we roll a six, we can still get a six on the next roll. Sampling with replacement
is sometimes called resampling. We’ll use the terms interchangeably.

Simple random sampling without replacement

If we take a simple random sample without replacement, each row of the dataset, or each type of
coffee, can only appear once in the sample.

Simple random sampling with replacement

If we sample with replacement, it means that each row of the dataset, or each coffee, can be
sampled multiple times.

Why sample with replacement?

So far, we’ve been treating the coffee_ratings dataset as the population of all coffees. Of course,
it doesn’t include every coffee in the world, so we could treat the coffee dataset as just being a
big sample of coffees. To imagine what the whole population is like, we need to approximate
the other coffees that aren’t in the dataset. Each of the coffees in the sample dataset will have
properties that are representative of the coffees that we don’t have. Resampling lets us use the
existing coffees to approximate those other theoretical coffees.

71

Coffee data preparation

To keep it simple, let’s focus on three columns of the coffee dataset. To make it easier to see which
rows ended up in the sample, we’ll add a row index column called index using the reset_index
method.

Resampling with .sample()

To sample with replacement, we call sample as usual but set the replace argument to True.
Setting frac to 1 produces a sample of the same size as the original dataset.

Repeated coffees

Counting the values of the index column shows how many times each coffee ended up in the
resampled dataset. Some coffees were sampled four or five times.

Missing coffees

That means that some coffees didn’t end up in the resample. By taking the number of distinct
index values in the resampled dataset, using len on drop_duplicates, we see that eight hundred
and sixty-eight different coffees were included. By comparing this number with the total number
of coffees, we can see that four hundred and seventy coffees weren’t included in the resample.

Bootstrapping

We’re going to use resampling for a technique called bootstrapping. In some sense, bootstrapping is
the opposite of sampling from a population. With sampling, we treat the dataset as the population
and move to a smaller sample. With bootstrapping, we treat the dataset as a sample and use it to
build up a theoretical population. A use case of bootstrapping is to try to understand the variability
due to sampling. This is important in cases where we aren’t able to sample the population multiple
times to create a sampling distribution.

Bootstrapping process

The bootstrapping process has three steps. First, randomly sample with replacement to get a
resample the same size as the original dataset. Then, calculate a statistic, such as a mean of
one of the columns. Note that the mean isn’t always the choice here and bootstrapping allows
for complex statistics to be computed, too. Then, replicate this many times to get lots of these
bootstrap statistics. Earlier in the course, we did something similar. We took a simple random
sample, then calculated a summary statistic, then repeated those two steps to form a sampling
distribution. This time, when we’ve used resampling instead of sampling, we get a bootstrap
distribution.

72

Bootstrapping coffee mean flavor

The resampling step uses the code we just saw: calling sample with frac set to one and replace
set to True. Calculating a bootstrap statistic can be done with mean from NumPy. In this case,
we’re calculating the mean flavor score. To repeat steps one and two one thousand times, we can
wrap the code in a for loop and append the statistics to a list.

Bootstrap distribution histogram

Here’s a histogram of the bootstrap distribution of the sample mean. Notice that it is close to
following a normal distribution.

0.4.2 Exercise 4.1.1

Generating a bootstrap distribution

The process for generating a bootstrap distribution is similar to the process for generating a
sampling distribution; only the first step is different.

To make a sampling distribution, you start with the population and sample without replacement.
To make a bootstrap distribution, you start with a sample and sample that with replacement.
After that, the steps are the same: calculate the summary statistic that you are interested in on
that sample/resample, then replicate the process many times. In each case, you can visualize the
distribution with a histogram.

Here, spotify_sample is a subset of the spotify dataset. To make it easier to see how resampling
works, a row index column called 'index' has been added, and only the artist name, song name,
and danceability columns have been included.

Instructions

1. Generate a single bootstrap resample from spotify_sample.
2. Calculate the mean of the danceability column of spotify_1_resample using numpy.
3. Replicate the expression provided 1000 times.
4. Create a bootstrap distribution by drawing a histogram of mean_danceability_1000.

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Importing the course array
spotify = pd.read_feather("datasets/spotify_2000_2020.feather")

Subset of spotify sample to use

73

spotify_sample = spotify.sample(n=41656)[['artists', 'name', 'danceability']]
spotify_sample['index'] = spotify_sample.index

Reorder columns to make 'index' the first column
spotify_sample = spotify_sample[['index', 'artists', 'name', 'danceability']]

Generate 1 bootstrap resample
spotify_1_resample = spotify_sample.sample(frac=1, replace = True)

Print the resample
print(spotify_1_resample)

Calculate of the danceability column of spotify_1_resample
mean_danceability_1 = np.mean(spotify_1_resample['danceability'])

Print the result
print(mean_danceability_1)

Replicate this 1000 times
mean_danceability_1000 = []
for i in range(1000):

mean_danceability_1000.append(
np.mean(spotify_sample.sample(frac=1, replace=True)['danceability'])

)

Print the result
print(mean_danceability_1000)

Draw a histogram of the resample means
plt.hist(mean_danceability_1000)
plt.show()

index artists \
38767 38767 ['Current Joys']
32960 32960 ['ODESZA', 'Leon Bridges']
1847 1847 ['Billie Eilish', 'TroyBoi']
2297 2297 ['Death Cab for Cutie']
27589 27589 ['Daft Punk']
...
6529 6529 ['Box Car Racer']
31310 31310 ['Reckless Kelly']
14976 14976 ['Benny Benassi', 'The Biz']
16604 16604 ['Lil Loaded']
1350 1350 ['Sun Rai']

74

name danceability
38767 Televisions 0.522
32960 Across The Room (feat. Leon Bridges) 0.566
1847 MyBoi - TroyBoi Remix 0.879
2297 A Movie Script Ending 0.505
27589 Robot Rock 0.590
...
6529 Watch The World 0.472
31310 Crazy Eddie's Last Hurrah 0.530
14976 Satisfaction - Radio Edit 0.854
16604 Gang Unit 0.912
1350 San Francisco Street 0.877

[41656 rows x 4 columns]
0.5911335509890532
[0.5915571250240061, 0.5923078548108316, 0.5920595472440945, 0.5905520789322066, 0.5906487780871903, 0.5926931966583445, 0.5920476618014212, 0.5906101425965046, 0.5908887843287882, 0.5911782888419435, 0.592230276550797, 0.5891956860956405, 0.5922216895525254, 0.5906062512003072, 0.5905168619166508, 0.5909114989437295, 0.5908954076243519, 0.5906712406376032, 0.5901289946226235, 0.5897241237756866, 0.5911083061263683, 0.5918592207605148, 0.5908526790858459, 0.5909273550028808, 0.5913058983099672, 0.5907934319185713, 0.5906218287881698, 0.5907583373343576, 0.5916617846168619, 0.5910500936239677, 0.5927510946802382, 0.5924027198962933, 0.5923228274438256, 0.590352748703668, 0.5917896389475705, 0.5918819785865181, 0.5928313688304206, 0.5927587910505089, 0.5904532144228922, 0.5906302957557134, 0.5916580348569234, 0.5915137891300173, 0.5911144733051661, 0.5913538385826772, 0.5919810015363933, 0.5908288097753025, 0.5908693465527175, 0.592590769637027, 0.5912226209909737, 0.5904922652198963, 0.5909341007297867, 0.5914514931822547, 0.5914632753985021, 0.590648578836182, 0.5910815800845015, 0.591982998847705, 0.590855509410409, 0.5912018916842712, 0.5904406544075284, 0.5920524006145572, 0.5902794123295564, 0.5916040354330708, 0.5899994382561935, 0.591330970328404, 0.5902440392740541, 0.5910648045899751, 0.5915193321490301, 0.5909981587286345, 0.5917245006721721, 0.5894495510850778, 0.5907552765507971, 0.5914646029383522, 0.5908314696562319, 0.59153861148454, 0.5916102290186288, 0.5913236844632225, 0.5913478058382947, 0.5911300845016325, 0.5930248439600538, 0.5926815704820434, 0.5915673468407913, 0.591129333109276, 0.5914586374111772, 0.5904885970808527, 0.5921413025734588, 0.590928113597081, 0.5915636883042059, 0.590705634242366, 0.5894078620126753, 0.5933116117726138, 0.5914565008642213, 0.5916930454196274, 0.5923638515459957, 0.592605948722873, 0.5911917250816209, 0.5914637819281737, 0.590317337238333, 0.5911668883234108, 0.5918944569809871, 0.5901603226425964, 0.5914140844056077, 0.5914472632994046, 0.5906797460149799, 0.5906503600921835, 0.5908514187632034, 0.5912546451891685, 0.5911935471480699, 0.5905078452083734, 0.5936727410217015, 0.5907181006337623, 0.5918637123103515, 0.5898978874591895, 0.5921080684655272, 0.5901485908392549, 0.5913302261378913, 0.590686410120991, 0.5914289898213942, 0.5902691352986364, 0.5906122383330134, 0.5911879273093912, 0.5916671403879392, 0.5892515027847129, 0.5913650782600346, 0.5904200211254081, 0.590899186191665, 0.5918145837334357, 0.590799831956981, 0.5925825307278664, 0.5921095088342615, 0.5901688856347226, 0.5921748727674284, 0.5912476449971192, 0.5903030679854042, 0.5904345856539274, 0.591806568081429, 0.5908664898213943, 0.5918033440560783, 0.5903704772421741, 0.5909142140387941, 0.5917079148261956, 0.5915887555214134, 0.5925649006145574, 0.5913066184943346, 0.5906387627232572, 0.5907533464566929, 0.5898345424428653, 0.5918250912233531, 0.5908788361820627, 0.5918600945842135, 0.5920394420971768, 0.590264110812368, 0.5902362324755138, 0.5909949611100442, 0.5914535337046284, 0.5900281087958517, 0.5909690152679086, 0.5916522493758404, 0.5916877112540812, 0.5920801685231419, 0.5909888131361629, 0.5913138515459958, 0.5913933310927598, 0.5919496399078163, 0.5911372863453044, 0.5915106155175724, 0.5920167802957558, 0.5911216415402343, 0.5907129849241406, 0.5931654263491454, 0.5919219488188977, 0.5904060543499136, 0.5893962286345305, 0.5914303677741501, 0.5921171019781064, 0.5911708685423469, 0.5894447786633378, 0.5920741117726138, 0.5920138443441522, 0.5930201723641253, 0.5913690944881891, 0.5921379417130785, 0.5918110548300365, 0.5915591847512964, 0.5912319209717688, 0.5919116861916652, 0.5918664370078741, 0.5926763059343192, 0.5891763059343192, 0.5906910409064721, 0.5915987324755138, 0.5916926973305165, 0.5906464254849242, 0.590757245054734, 0.5914515940080661, 0.5915971672748224, 0.5908611700595352, 0.5926239629345113, 0.5908418427117342, 0.5903087886498944, 0.5924446130209334, 0.5897883858267717, 0.5910287665642403, 0.5910367510082581, 0.5899242101978106, 0.5911624111772614, 0.5910580348569234, 0.590848720472441, 0.5914495870942961, 0.5907283344536202, 0.5911355338966775, 0.5907227554253889, 0.591745645285193, 0.589686746207029, 0.5903783272517765, 0.5911864413289802, 0.5923169099289418, 0.5925334333589398, 0.5912076819665835, 0.5899867270021125, 0.5920120198770885, 0.5913038529863645, 0.5911202803917803, 0.5915833805454198, 0.5919799572690609, 0.5908520717303629, 0.5912464518916842, 0.5920191905127713, 0.5920931774534282, 0.5907534064720569, 0.591589218840023, 0.5918472584981755, 0.5926982883618206, 0.5920849409448818, 0.5907289802189362, 0.5902645189168427, 0.5914738765123873, 0.5901193393508738, 0.5907907816400999, 0.5908642572498559, 0.5918411345304398, 0.590333291722681, 0.5903558550989052, 0.5915765171884001, 0.5898300148838103, 0.591439614941425, 0.591319250528135, 0.5903338582677164, 0.5915500144036874, 0.5899910745150758, 0.5915475465719224, 0.5924060591511427, 0.5913348953332053, 0.590613947570578, 0.5902359780103706, 0.5916450523333974, 0.5913402583061262, 0.5901682518724793, 0.591127424620703, 0.5908382777991166, 0.5910146677549454, 0.5928248823698867, 0.5919310927597464, 0.5901679061839832, 0.5901973761282888, 0.5917796163817937, 0.5911029911657384, 0.5906024486268486, 0.5914465143076627, 0.5905839590935279, 0.5909759146341463, 0.5911926421163818, 0.5914503504897254, 0.5917908776646822, 0.5903690872863452, 0.5920749375840215, 0.591039490109468, 0.5904372527367006, 0.5915216607451508, 0.5907443825619358, 0.5911814528519301, 0.5933475393700787, 0.5936071154215478, 0.5914213054541962, 0.590681013539466, 0.5906786417322835, 0.591939007585942, 0.5912986148454005, 0.5894046763971577, 0.5907806078356058, 0.5909790690416747, 0.5911979474745536, 0.5898608915882466, 0.5916073626848473, 0.591580879105051, 0.5916982667562896, 0.5901601281928174, 0.5906142788553871, 0.5923254777222968, 0.59010789082005, 0.5912000024006147, 0.5917611508546188, 0.5911426157096216, 0.5895152991165739, 0.5920088750720184, 0.5920655271749569, 0.590990748031496, 0.5916161561359708, 0.5901074851161898, 0.5920629201075476, 0.5918976377952756, 0.5912111196466296, 0.59067405175725, 0.5893645453236028, 0.5903774414250047, 0.5913717399654311, 0.59136637699251, 0.5903771701555598, 0.5906239485308239, 0.5909366573842904, 0.5913211470136355, 0.5911989605338966, 0.5901922796235836, 0.5915454748415595, 0.5906681222392933, 0.5917946154215479, 0.5906817937391973, 0.5913526238717111, 0.5910839518916843, 0.5906103610524294, 0.5908155967927788, 0.5902857235452276, 0.5906449178989821, 0.5906260658728635, 0.5917311143652775, 0.5909479114653351, 0.5925023526022664, 0.5913291890724025, 0.5910910313040137, 0.5912171211830228, 0.5906802405415786, 0.5924646629537161, 0.5917550292874976, 0.5910617750144037, 0.5909556198386787, 0.5917599481467255, 0.5911853610524295, 0.5913161945458038, 0.5909786753408872, 0.5900374663913963, 0.5913708589398886, 0.5902679565968889, 0.5905292274822355, 0.591449831956981, 0.5921398381985788, 0.590335260226618, 0.5918320265988093, 0.5910339518916843, 0.5914337046283848, 0.5913096984828117, 0.5911180766276167, 0.5909037161513347, 0.5897665714422892, 0.5918119454580372, 0.5915507777991165, 0.5917616957941233, 0.5930142548492414, 0.590933791050509, 0.5913286081236797, 0.5914327035721144, 0.5904939168427118, 0.5931780727866334, 0.59140789082005, 0.5905871303053583, 0.590875650566545, 0.5917459141540234, 0.5920321874399846, 0.5897008690224698, 0.5903168283080468, 0.5902664466103321, 0.59034815632802, 0.5902687944113693, 0.5925935519492991, 0.5912562439984637, 0.5923484636066834, 0.5925955036489342, 0.5905297868254273, 0.591832038601882, 0.5898073146725562, 0.5903257321874399, 0.5919109420011522, 0.5913016084117535, 0.5905201795659688, 0.5913846672748223, 0.591200883426157, 0.5921309847320915, 0.5931818105434992, 0.5902715071058191, 0.5902238933166891, 0.5908927333397349, 0.5908994358555791, 0.591963275398502, 0.5918091991549836, 0.5914892404455541, 0.5917239293259074, 0.5925401094680237, 0.5914159976954099, 0.5924558574995199, 0.5914043403111197, 0.5928636955060496, 0.5916668787209527, 0.5922260058574995, 0.5886504201075475, 0.5912136859035912, 0.591564636546956, 0.591659131937776, 0.5902243878432879, 0.5925661201267525, 0.5919797268100634, 0.5898231107163434, 0.5911748247551374, 0.5923583997503361, 0.5906215815248703, 0.5920381697714615, 0.5909716895525255, 0.5912728058382946, 0.5920545347608988, 0.5912332245054733, 0.5934833973497214, 0.5917453019973113, 0.5903221936815826, 0.5924243614365277, 0.5906093239869407, 0.5922891300172846, 0.5908210749951988, 0.5923219512195121, 0.5907459837718456, 0.590101778855387, 0.5914551445169963, 0.589455672652199, 0.5920329172268101, 0.5901599529479548, 0.5920341871519109, 0.591999138179374, 0.5904245942961398, 0.5915386570962166, 0.5906525134434416, 0.590457934031112, 0.5927400566545036, 0.5905492366045707, 0.5909544531400038, 0.5918700091223353, 0.5912546547916266, 0.5914533008450162, 0.5906802837526407, 0.5901741477818321, 0.592091583445362, 0.5904197090455157, 0.5896950619358556, 0.5907115637603227, 0.5912845496447091, 0.5915938592279624, 0.5910288169771462, 0.5911299740733628, 0.5920357331476859, 0.5927355723065105, 0.5919809343191856, 0.5902234299980795, 0.5922426589206837, 0.590151714038794, 0.5919313760322643, 0.5903165474361436, 0.5906676205108508, 0.5915641804301902, 0.5901223137123103, 0.5908955924716728, 0.5922581980987133, 0.592277494238525, 0.591229854042635, 0.5913987084693682, 0.5917718191857115, 0.5915178653735356, 0.5905259506433647, 0.5922107883618206, 0.5920310111388516, 0.5893620702899942, 0.5895778135202613, 0.5919620198770886, 0.5898650614557326, 0.5906802261378914, 0.5906589686959861, 0.5907054734011907, 0.5909874639907816, 0.590981740925677, 0.5900746399078164, 0.5925713870750912, 0.5902003768964854, 0.5924135370654888, 0.5930591367390052, 0.5919608819857882, 0.5908779119454579, 0.5909303989821395, 0.5918189744574611, 0.591702093335894, 0.5908104666794699, 0.5918851690032648, 0.5911400182446707, 0.5907422436143651, 0.591035363453044, 0.5919954340311119, 0.592123384386403, 0.589629457941233, 0.590756844152103, 0.5906607931630498, 0.5931989341271365, 0.591628454484348, 0.5923884650470521, 0.5915363597080853, 0.5934756049548684, 0.5911699251008258, 0.5913711878240829, 0.5918452731899366, 0.5917289994238526, 0.5903693345496448, 0.589984712886499, 0.5917516588246591, 0.5909760442673324, 0.589615601594008, 0.5921029935663531, 0.5915758930286152, 0.5912151190704821, 0.591359799308623, 0.5920582004993278, 0.589978997023238, 0.5911653111196465, 0.5910907144228923, 0.5920844176109084, 0.5907685951603611, 0.5904573338774727, 0.5903125432110621, 0.592029767620511, 0.5906390099865566, 0.5912025758594202, 0.5900165594392165, 0.5912627472632994, 0.5901290330324563, 0.5903682806798541, 0.5913430310159401, 0.5929105987132706, 0.5916691809103131, 0.5917829268292683, 0.5920996591127329, 0.5910577899942386, 0.5913933430958325, 0.5908544267332437, 0.5911491285769157, 0.5907756841751488, 0.5916802573458805, 0.5917047676205107, 0.5902068945650086, 0.5925715647205685, 0.5910820121951219, 0.5913824467063568, 0.5922995414826197, 0.5927585749951988, 0.5909852818321492, 0.5908217927789514, 0.5917320506049548, 0.5897711518148646, 0.591047152871135, 0.591525780199731, 0.591432201843672, 0.5904045251584406, 0.5907764019589016, 0.5914869982715575, 0.5925461638179375, 0.5912355458997504, 0.5911699515075859, 0.5912711206068755, 0.5924898141924332, 0.5901239845400422, 0.5915457173036297, 0.5905101810063376, 0.5912055118110237, 0.591546859996159, 0.5912869646629538, 0.5912365013443442, 0.5912351041866717, 0.5919253264835798, 0.5922770381217591, 0.5891964614941424, 0.5907123223545228, 0.591272949875168, 0.5890273934127137, 0.5903021845592472, 0.5920130761474937, 0.5920686527751106, 0.5892661513347417, 0.5910704076243518, 0.5914559583253312, 0.5914989845400422, 0.5912930622239294, 0.589908188496255, 0.5918713918763204, 0.5912600609756098, 0.5905594968311888, 0.5915301253120798, 0.5914482067409258, 0.5894921787977723, 0.5918468816016901, 0.5910387483195698, 0.5907292370846936, 0.5912979042634915, 0.5890984035913194, 0.59172353562512, 0.5904688472248896, 0.59191526550797, 0.59064463222585, 0.5909005761474937, 0.5891784760898789, 0.5925345520453238, 0.5916736892644517, 0.5904287977722297, 0.5906678821778375, 0.5908866669867485, 0.5914373559631265, 0.590063985980411, 0.5919742125984252, 0.5910681942577299, 0.5910237300748992, 0.5921717591703476, 0.5921839422892261, 0.5907321274246207, 0.5922883810255425, 0.5921596096600731, 0.5908515916074516, 0.5910487900902631, 0.5916654695602075, 0.5920966895525254, 0.5918784616861917, 0.5921774174188592, 0.5907294723449202, 0.5915205444593816, 0.591026800460918, 0.5916504489149221, 0.5913558911081237, 0.5914343984059919, 0.5921705396581526, 0.5917779551565202, 0.5910699443057423, 0.5924626656424045, 0.5913238333013251, 0.590270834933743, 0.5912839182830804, 0.5895977242173996, 0.5902952563856347, 0.5912225465719224, 0.591092694929902, 0.5924075883426156, 0.589362353562512, 0.5922194809871326, 0.5932105771077397, 0.5927080180526215, 0.5888927717495679, 0.5911812512003073, 0.5913169939504512, 0.5912995102746303, 0.5923198218743999, 0.5917644348953333, 0.5918263059343192, 0.5927732163433839, 0.5915252208565392, 0.5910138587478395, 0.5916930502208566, 0.589861366909929, 0.5902725273670061, 0.5918952971960822, 0.5902274222200883, 0.5902960581908969, 0.5913283368542347, 0.5911770837334358, 0.5915169003264835, 0.5905386883042057, 0.5914382129825234, 0.5914003384866526, 0.5920081788937968, 0.5904509074323027, 0.5909252784712886, 0.5915070145957364, 0.5910749375840215, 0.5906225993854427, 0.5903912761666986, 0.591850331284809, 0.5920541074515077, 0.5906708229306702, 0.5911441905127712, 0.5919708709429614, 0.5908789682158633, 0.5910244766660265, 0.5898197690608795, 0.5916819593816017, 0.5912127448626848, 0.5917060255425389, 0.5908654455540617, 0.5912762291146534, 0.5929819545803725, 0.5910751704436337, 0.5916271269444978, 0.592276133090071, 0.5924486076435568, 0.5901063352218168, 0.5924904239485307, 0.5919526646821586, 0.5936039850201652, 0.5910766012099098, 0.5921825571346264, 0.5906271509506433, 0.5913559343191856, 0.59123603562512, 0.5889468335893989, 0.5907260706740924, 0.5897045923756482, 0.5903595136354907, 0.5917336518148646, 0.5923879921259843, 0.5927957869214519, 0.5916290618398311, 0.5927374543883235, 0.5913530223737277, 0.592040868062224, 0.5905287545611676, 0.5910580468599962, 0.5901436959861724, 0.5909697426541195, 0.5917864197234491, 0.5903029959669674, 0.5907483483771845, 0.5914197834645669, 0.5915470976570003, 0.5910020141156136, 0.5901724793547148, 0.5918721600729787, 0.5909830684655271, 0.5917515724025351, 0.5908490253504897, 0.5912116621855195, 0.5909079100249666, 0.5901200379297099, 0.5914007273862109, 0.5912857619550606, 0.5918560063376225, 0.5912279431534473, 0.5910431486460533, 0.5899261690992895, 0.5914883066064913, 0.5915569665834453, 0.5930339038793931, 0.5912239557326674, 0.59053107355483, 0.5910242198002689, 0.5913995078740159, 0.5917873847705011, 0.5898656159976954, 0.5918125480122912, 0.590400422508162, 0.5920960773958134, 0.5908055934319185, 0.591405254945266, 0.5916050412905705, 0.5918811431726522, 0.5901711950259266, 0.5925833733435759, 0.5896820362012676, 0.5914163745918956, 0.5911584813712311, 0.592091290570386, 0.589803828980219, 0.5904195314000384, 0.5913335197810639, 0.5892494694641829, 0.590982120222777, 0.5915668715191089, 0.590267212406376, 0.591984398405992, 0.5911791338582678, 0.5916315872863452, 0.590692836566161, 0.5907113212982523, 0.591044068081429, 0.5930019973113118, 0.5907847296908009, 0.5908344992318033, 0.5920639787785672, 0.5907464975033608, 0.5907328380065296, 0.5907766132129825, 0.590522006433647, 0.5908840527174957, 0.5918419939504513, 0.5902957533128481, 0.5917611604570772, 0.5910931318417516, 0.590440894468984, 0.5924492318033416, 0.5913344944305743, 0.5918488957173036, 0.5912237396773574, 0.5901906952179758, 0.5919358579796428, 0.5919956668907239, 0.5918896845592472, 0.5919167058767044, 0.5913543187055887, 0.5901966799500672, 0.5918301445169963, 0.5922087622431342, 0.5914562175917034, 0.5914072786633379, 0.5912653159208758, 0.590547673804494, 0.5917438952371806, 0.5917626128288842, 0.5906858867870175, 0.5909923516420204, 0.5913234468023814, 0.5919009218359901, 0.590523828500096, 0.592252722296908, 0.591912900902631, 0.5910857883618206, 0.5908563736316497, 0.5932479690800844, 0.5908717999807951, 0.5904556030343768, 0.5915196706356828, 0.5916733531784136, 0.591277184559247, 0.5911821874399846, 0.5907694953908201, 0.592253286441329, 0.5922648285961206, 0.5923889235644325, 0.5912050148838102, 0.5916555118110235, 0.5903382681966584, 0.5919072162473592, 0.5913883594200114, 0.5908405103706549, 0.5908058599001345, 0.5903571250240061, 0.5904075211254082, 0.5926526478778568, 0.5907606371231036, 0.5919707028999425, 0.5923499039754176, 0.5911920995774919, 0.5899784040714422, 0.5899104138659496, 0.5913284112732858, 0.590852299788746, 0.5917235860380258, 0.5906916890724025, 0.5907867654119454, 0.5905660937199925, 0.5918489029191472, 0.5916604498751681, 0.590986474937584, 0.5913302669483388, 0.5919518436719801, 0.5921512171115806, 0.5928082125024006, 0.5902938760322641, 0.592438172172076, 0.5913295755713462, 0.5906213510658729, 0.5918734011907048, 0.5899866045707702, 0.5904645909352795, 0.5896578164009987, 0.5917098257153832, 0.5909642500480123, 0.5929796667946995, 0.5924692865373535, 0.5902858939888611, 0.5905316545035528, 0.590373806894565, 0.5912268724793547, 0.5913890315920876, 0.5915872143268677, 0.5916931822546572, 0.5911704364317266, 0.5909719392164394, 0.5897825475321682, 0.5900543643172653, 0.5921668979258689, 0.5929503120798923, 0.5914285985212213, 0.5918024054157864, 0.5939015531976186, 0.5897881145573267, 0.5915481251200307, 0.5922934247167275, 0.5913296067793355, 0.5904810471480698, 0.5909342615709622, 0.5918351666026503, 0.591011746207029, 0.590796648742078, 0.590331448050701, 0.5911175845016324, 0.5906662977722297, 0.5917202155751873, 0.5911197426541195, 0.5912366717879777, 0.5909405943921644, 0.590167044363357, 0.5915910937199923, 0.5906114413289801, 0.5928680382177837, 0.5910069569809872, 0.5911642476473976, 0.591553329652391, 0.5899700307278662, 0.5922521029383522, 0.5923950643364702, 0.5923461806222393, 0.5879675532936431, 0.5906449275014405, 0.5900826507585942, 0.5906282576339543, 0.5916856179181871, 0.5901190056654503, 0.5901324539082006, 0.5921819065680815, 0.5909052453428078, 0.5919217063568274, 0.5899686887843288, 0.5918629849241406, 0.5917205060495487, 0.591812288745919, 0.5918266564240445, 0.5905469752256577, 0.5915857859612059, 0.5904883978298445, 0.5921726329940464, 0.591583687824083, 0.591309420011523, 0.5891758930286153, 0.5927670803725754, 0.5907368470328405, 0.5902086566160938, 0.5911774102170155, 0.5913432758786249, 0.592209187151911, 0.5912074875168043, 0.5914620678893796, 0.5902845304397926, 0.591189050797004, 0.5901953212022277, 0.590671019781064, 0.5918909064720569, 0.5904100441713079, 0.5912550965047052, 0.5913123847705013, 0.5909874375840216, 0.5927075067217208, 0.591769137699251, 0.5921400134434415, 0.5910445650086422, 0.5901226666026503, 0.5910652294987517, 0.5909917010754753, 0.5898391780295756, 0.5918773526022663, 0.5910830252544652, 0.5920701819665836, 0.5918175316881122, 0.5918519180910313, 0.5908814744574611, 0.5914359876128289, 0.5893681798540427, 0.5913975849817553, 0.591329755617438, 0.5902646077395813, 0.5901915570386018, 0.593071274246207, 0.5910678749759938, 0.5926569809871327, 0.5907445073938928, 0.5908429902054926, 0.590962348761283, 0.5908909184751296, 0.5915183310927599, 0.5915465503168811, 0.5911831932974841, 0.5910512987324754, 0.5915833805454196, 0.591178075187248, 0.590860195410025, 0.5921030559823315, 0.5912668139043595]

0.588 0.589 0.590 0.591 0.592 0.593 0.594
0

50

100

150

200

250

0.4.3 Chapter 4.2: Comparing sampling and bootstrap distributions

Coffee focused subset

we took a focused subset of the coffee dataset. Here’s a five hundred row sample from it.

The bootstrap of mean coffee flavors

75

Here, we generate a bootstrap distribution of the mean coffee flavor scores from that sample.
.sample generates a resample, np.mean calculates the statistic, and the for loop with .append
repeats these steps to produce a distribution of bootstrap statistics.

Mean flavor bootstrap distribution

Observing the histogram of the bootstrap distribution, which is close to a normal distribution.

Sample, bootstrap distribution, population means

Here’s the mean flavor score from the original sample. In the bootstrap distribution, each value is
an estimate of the mean flavor score. Recall that each of these values corresponds to one potential
sample mean from the theoretical population. If we take the mean of those means, we get our
best guess of the population mean. The two values are really close. However, there’s a problem.
The true population mean is actually a little different.

Interpreting the means

The behavior that you just saw is typical. The bootstrap distribution mean is usually almost
identical to the original sample mean. However, that is not often a good thing. If the original
sample wasn’t closely representative of the population, then the bootstrap distribution mean won’t
be a good estimate of the population mean. Bootstrapping cannot correct any potential biases
due to differences between the sample and the population.

Sample sd vs. bootstrap distribution sd

While we do have that limitation in estimating the population mean, one great thing about
distributions is that we can also quantify variation. The standard deviation of the sample flavors
is around 0.354. Recall that pandas .std calculates a sample standard deviation by default. If
we calculate the standard deviation of the bootstrap distribution, specifying a ddof of one, then
we get a completely different number. So what’s going on here?

Sample, bootstrap dist’n, pop’n standard deviations

Remember that one goal of bootstrapping is to quantify what variability we might expect in
our sample statistic as we go from one sample to another. Recall that this quantity is called the
standard error as measured by the standard deviation of the sampling distribution of that statistic.
The standard deviation of the bootstrap means can be used as a way to estimate this measure
of uncertainty. If we multiply that standard error by the square root of the sample size, we get
an estimate of the standard deviation in the original population. Our estimate of the standard
deviation is around point-three-five-three. The true standard deviation is around point-three-
four-one, so our estimate is pretty close. In fact, it is closer than just using the sample standard
deviation alone.

76

Interpreting the standard errors

To recap, the estimated standard error is the standard deviation of the bootstrap distribution
values for our statistic of interest. This estimated standard error times the square root of the
sample size gives a really good estimate of the standard deviation of the population. That is,
although bootstrapping was poor at estimating the population mean, it is generally great for
estimating the population standard deviation.

0.4.4 Exercise 4.2.1

Sampling distribution vs. bootstrap distribution

The sampling distribution and bootstrap distribution are closely linked. In situations where you
can repeatedly sample from a population (these occasions are rare), it’s helpful to generate both
the sampling distribution and the bootstrap distribution, one after the other, to see how they are
related.

Here, the statistic you are interested in is the mean popularity score of the songs.

Instructions

1. Generate a sampling distribution of 2000 replicates.

• Sample 500 rows of the population without replacement and calculate the mean popularity.

2. Generate a bootstrap distribution of 2000 replicates.

• Sample 500 rows of the sample with replacement and calculate the mean popularity.

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Importing the course array
spotify = pd.read_feather("datasets/spotify_2000_2020.feather")

spotify_sample = spotify.sample(n=500)

mean_popularity_2000_samp = []

Generate a sampling distribution of 2000 replicates
for i in range(2000):

mean_popularity_2000_samp.append(
Sample 500 rows and calculate the mean popularity
spotify.sample(n=500)['popularity'].mean()

77

)

Print the sampling distribution results
print(mean_popularity_2000_samp)

mean_popularity_2000_boot = []

Generate a bootstrap distribution of 2000 replicates
for i in range(2000):

mean_popularity_2000_boot.append(
Resample 500 rows and calculate the mean popularity
np.mean(spotify_sample.sample(frac=1, replace=True)['popularity'])

)

Print the bootstrap distribution results
print(mean_popularity_2000_boot)

[54.526, 54.586, 54.742, 54.964, 54.646, 53.94, 54.454, 54.884, 55.182, 54.766, 54.578, 54.632, 55.044, 54.446, 54.246, 55.59, 55.072, 55.318, 54.76, 55.696, 55.146, 55.548, 55.032, 54.596, 55.048, 55.076, 55.25, 54.982, 54.422, 54.638, 55.488, 54.186, 55.092, 54.202, 54.318, 54.264, 55.364, 54.178, 53.75, 55.144, 54.67, 54.512, 55.716, 55.848, 54.83, 54.516, 54.232, 54.848, 55.028, 55.172, 54.95, 55.042, 55.754, 54.278, 55.098, 55.122, 55.552, 55.542, 54.712, 54.614, 54.742, 54.238, 54.824, 54.826, 55.666, 55.036, 54.8, 54.54, 54.99, 54.598, 54.892, 54.328, 54.254, 54.386, 54.814, 55.112, 55.502, 54.862, 54.962, 55.012, 54.828, 54.724, 55.16, 55.366, 54.652, 54.08, 54.806, 55.506, 54.838, 54.986, 55.306, 54.722, 55.388, 55.004, 54.374, 55.142, 54.572, 54.954, 53.902, 54.408, 55.904, 55.02, 54.692, 55.27, 55.382, 55.11, 54.236, 54.42, 54.662, 54.782, 54.876, 55.576, 54.576, 54.646, 54.15, 55.094, 55.426, 55.268, 54.99, 54.992, 56.064, 55.576, 53.968, 55.052, 54.66, 54.974, 55.498, 55.356, 54.442, 54.89, 54.722, 54.836, 54.56, 55.35, 54.852, 54.566, 54.788, 54.924, 54.46, 54.764, 55.104, 54.584, 55.332, 54.31, 54.206, 54.626, 54.886, 55.194, 53.916, 54.52, 55.138, 55.09, 54.858, 54.476, 55.586, 54.546, 55.656, 54.848, 54.142, 54.51, 54.67, 54.974, 55.068, 54.284, 55.396, 53.47, 54.99, 56.326, 54.332, 54.642, 54.342, 53.972, 54.356, 54.812, 55.384, 55.814, 56.37, 54.98, 54.436, 54.604, 55.536, 54.608, 55.096, 55.11, 54.516, 54.532, 55.646, 55.262, 54.582, 55.208, 55.334, 54.62, 54.934, 54.596, 55.334, 54.614, 55.31, 54.922, 54.894, 54.828, 54.932, 54.336, 54.13, 54.252, 54.894, 55.098, 55.036, 54.762, 53.934, 54.778, 54.77, 53.354, 54.906, 54.716, 54.464, 56.664, 54.776, 54.95, 55.844, 55.226, 55.556, 55.24, 54.608, 55.722, 55.102, 54.364, 55.528, 54.97, 54.928, 54.554, 54.83, 54.416, 55.4, 54.804, 53.68, 54.466, 53.928, 54.332, 54.758, 54.674, 54.658, 55.368, 54.96, 55.102, 54.2, 55.218, 55.198, 55.188, 54.548, 55.318, 54.768, 54.49, 55.66, 54.654, 55.216, 54.3, 54.898, 54.648, 54.158, 54.372, 54.268, 55.188, 55.074, 55.186, 55.332, 54.864, 54.256, 55.15, 55.34, 53.994, 54.988, 55.074, 54.684, 54.474, 54.464, 55.066, 55.228, 54.496, 53.92, 55.322, 55.302, 55.134, 55.258, 55.398, 55.01, 54.99, 54.088, 55.392, 54.164, 54.158, 55.09, 55.37, 54.588, 55.08, 54.704, 54.056, 54.64, 55.296, 55.306, 54.424, 54.762, 54.586, 55.09, 55.48, 54.774, 54.3, 53.988, 55.214, 54.928, 53.708, 54.79, 54.512, 54.94, 55.202, 54.954, 55.238, 54.332, 54.622, 54.404, 55.46, 55.266, 55.502, 54.94, 54.832, 54.918, 55.19, 55.282, 54.78, 54.662, 54.43, 54.26, 54.442, 54.56, 54.18, 54.292, 54.914, 54.622, 55.072, 54.96, 54.22, 55.524, 54.726, 54.394, 54.666, 54.958, 55.64, 54.732, 55.798, 55.302, 54.522, 55.548, 54.164, 54.812, 54.882, 54.77, 54.5, 55.428, 54.354, 55.386, 54.56, 54.496, 54.908, 55.094, 54.77, 54.362, 55.012, 55.404, 55.648, 54.336, 54.358, 54.214, 55.316, 54.384, 54.556, 55.194, 54.756, 55.362, 55.232, 55.144, 54.422, 54.578, 54.688, 55.644, 54.916, 53.832, 55.046, 55.058, 54.76, 55.308, 54.724, 55.074, 55.144, 54.662, 54.776, 55.128, 54.96, 54.968, 55.278, 54.992, 55.374, 55.312, 53.89, 54.206, 54.596, 55.416, 55.682, 55.198, 55.324, 55.426, 55.068, 54.638, 54.5, 55.076, 54.46, 54.582, 55.4, 54.286, 54.55, 54.27, 54.932, 55.552, 55.64, 54.928, 55.136, 54.348, 55.136, 54.956, 53.898, 53.782, 55.69, 54.84, 55.586, 54.638, 54.632, 55.778, 55.778, 54.166, 55.99, 54.824, 55.22, 54.538, 54.338, 54.366, 54.202, 55.02, 55.13, 55.384, 55.02, 54.5, 54.128, 54.98, 54.962, 55.938, 54.512, 55.632, 53.998, 55.752, 54.834, 55.36, 55.288, 55.374, 54.756, 55.224, 55.272, 54.032, 55.518, 54.826, 54.476, 53.716, 55.078, 55.436, 54.618, 54.752, 54.868, 54.686, 54.948, 55.948, 55.05, 54.694, 54.346, 55.282, 54.686, 55.178, 55.03, 55.286, 54.414, 54.908, 55.174, 54.742, 54.136, 55.1, 54.664, 55.32, 54.45, 55.196, 55.216, 54.616, 55.804, 54.96, 54.674, 55.424, 54.338, 54.028, 54.23, 54.988, 54.514, 54.998, 54.546, 54.742, 54.848, 55.71, 55.316, 55.126, 54.264, 54.938, 54.926, 55.068, 54.504, 54.824, 54.594, 54.182, 53.572, 54.558, 54.588, 54.806, 54.998, 54.408, 54.618, 54.568, 54.612, 54.612, 54.184, 54.662, 55.428, 54.814, 54.676, 53.966, 55.486, 54.5, 54.952, 54.288, 54.312, 54.502, 54.574, 54.366, 54.984, 54.682, 54.984, 54.396, 54.292, 55.582, 54.908, 55.138, 54.506, 55.64, 54.462, 55.03, 55.21, 54.012, 54.69, 54.076, 54.294, 54.748, 54.844, 55.422, 54.854, 55.294, 54.964, 54.792, 54.84, 54.858, 55.294, 55.72, 54.98, 54.454, 54.762, 55.262, 55.008, 54.924, 55.608, 54.954, 54.82, 55.32, 55.534, 55.628, 54.25, 54.346, 54.176, 54.462, 54.53, 55.318, 54.83, 54.436, 54.84, 54.714, 54.11, 55.142, 55.514, 54.808, 54.044, 54.866, 55.086, 54.552, 54.158, 55.306, 55.44, 54.51, 54.076, 54.892, 53.74, 55.018, 54.804, 55.196, 54.634, 54.872, 54.9, 53.92, 54.774, 54.552, 55.326, 54.848, 54.376, 54.98, 55.532, 54.26, 55.414, 54.248, 55.756, 54.802, 54.268, 54.446, 55.4, 53.764, 54.088, 54.7, 54.208, 55.14, 54.84, 55.022, 54.97, 54.462, 55.31, 54.372, 55.706, 54.128, 54.452, 53.792, 55.26, 54.084, 54.74, 54.234, 56.04, 54.604, 55.806, 55.374, 54.908, 55.276, 55.142, 54.534, 54.342, 53.998, 54.392, 55.526, 54.874, 54.5, 55.172, 54.594, 54.74, 54.056, 55.082, 55.038, 55.482, 54.122, 55.262, 54.458, 54.004, 53.742, 55.218, 56.026, 54.8, 55.164, 54.866, 55.662, 55.444, 55.196, 54.502, 54.666, 54.986, 54.722, 54.734, 53.988, 54.88, 54.802, 54.372, 54.06, 55.004, 55.174, 55.236, 54.99, 54.646, 54.804, 54.338, 54.872, 54.884, 54.47, 55.104, 54.974, 54.54, 55.268, 53.894, 55.228, 55.352, 54.524, 54.956, 55.536, 54.556, 54.832, 55.362, 55.456, 54.594, 55.406, 54.092, 55.188, 55.06, 55.578, 55.084, 54.702, 54.864, 55.98, 54.81, 55.086, 54.44, 54.842, 54.38, 54.87, 54.256, 54.614, 53.938, 54.49, 54.656, 55.08, 55.192, 55.004, 54.67, 55.356, 55.244, 55.22, 54.74, 55.034, 54.828, 54.308, 53.656, 54.902, 54.644, 54.25, 54.618, 54.616, 54.958, 55.242, 55.724, 54.618, 54.648, 54.288, 54.788, 55.568, 55.574, 54.274, 54.898, 55.024, 55.238, 54.602, 54.53, 55.084, 55.142, 55.186, 54.964, 54.928, 54.902, 55.046, 54.96, 55.378, 54.264, 54.56, 54.646, 54.898, 54.314, 54.642, 53.424, 54.612, 55.3, 55.244, 55.132, 54.586, 54.544, 55.16, 55.464, 54.29, 55.444, 55.268, 54.916, 54.514, 55.972, 54.516, 55.126, 54.908, 54.502, 55.048, 55.078, 54.672, 55.024, 54.952, 55.504, 54.424, 55.642, 53.834, 54.646, 55.402, 54.408, 54.474, 54.492, 54.928, 55.404, 54.328, 55.082, 55.324, 54.166, 54.42, 55.482, 54.516, 53.984, 54.694, 54.484, 54.652, 55.028, 55.172, 54.314, 54.806, 55.356, 54.26, 54.932, 54.716, 55.578, 55.704, 54.194, 54.802, 55.47, 54.9, 54.404, 54.612, 54.264, 54.95, 54.486, 54.962, 55.48, 55.034, 55.066, 55.066, 55.138, 55.558, 54.816, 55.484, 55.382, 54.904, 55.002, 54.464, 55.19, 54.096, 54.752, 54.948, 55.102, 54.974, 54.902, 54.956, 53.952, 54.8, 55.1, 55.86, 54.636, 54.854, 55.044, 54.664, 55.408, 54.964, 54.88, 54.66, 54.8, 54.3, 54.592, 55.018, 55.522, 54.75, 55.016, 54.93, 54.976, 55.106, 55.014, 55.764, 55.074, 54.54, 54.528, 55.042, 55.004, 54.984, 55.032, 55.928, 54.976, 54.866, 54.61, 54.394, 55.272, 54.852, 54.562, 54.908, 55.168, 54.968, 53.698, 54.03, 54.526, 54.214, 54.56, 55.36, 54.642, 55.392, 54.874, 55.2, 55.158, 55.134, 55.468, 55.122, 55.76, 54.788, 55.396, 54.868, 54.476, 54.416, 55.796, 55.322, 54.828, 54.844, 53.982, 54.764, 54.314, 54.21, 54.844, 54.358, 55.554, 54.86, 55.112, 54.134, 55.14, 55.302, 54.818, 54.982, 54.788, 54.242, 55.092, 53.996, 54.95, 54.798, 54.562, 54.752, 54.384, 54.864, 54.824, 54.4, 55.198, 54.772, 54.596, 54.402, 54.982, 54.45, 55.502, 56.032, 54.954, 55.18, 54.96, 54.402, 55.422, 55.124, 54.342, 55.5, 54.784, 54.802, 55.006, 54.65, 55.386, 54.802, 55.074, 54.26, 55.988, 55.372, 55.322, 53.73, 54.486, 55.29, 54.368, 54.564, 54.98, 55.192, 54.392, 53.764, 55.04, 54.274, 54.536, 54.114, 53.968, 55.13, 54.384, 54.612, 55.828, 54.984, 54.852, 54.522, 54.856, 54.854, 54.742, 54.348, 54.864, 55.154, 54.966, 54.976, 54.948, 55.85, 54.316, 54.072, 54.352, 54.196, 54.69, 54.938, 54.918, 54.21, 54.084, 55.662, 53.49, 54.08, 54.822, 54.726, 55.088, 54.976, 54.656, 55.314, 55.158, 55.306, 54.554, 54.92, 54.602, 54.658, 55.41, 54.998, 54.62, 54.944, 54.666, 54.562, 55.164, 55.532, 54.978, 55.14, 55.186, 54.616, 54.692, 55.522, 54.73, 54.036, 55.488, 54.388, 53.59, 54.952, 54.754, 55.028, 55.478, 55.906, 54.802, 54.954, 54.298, 54.568, 55.01, 55.69, 54.866, 54.582, 54.568, 54.998, 55.358, 54.422, 55.854, 55.238, 53.978, 54.684, 54.704, 54.76, 55.608, 55.044, 54.468, 55.128, 55.096, 54.376, 55.124, 54.254, 56.048, 55.13, 54.868, 55.286, 54.578, 55.748, 54.422, 56.018, 54.088, 54.688, 54.956, 54.344, 55.56, 55.218, 54.576, 54.806, 55.22, 55.592, 54.498, 54.926, 54.008, 54.702, 55.056, 54.986, 54.37, 56.456, 54.384, 54.852, 54.982, 54.936, 54.798, 54.764, 53.844, 54.166, 55.298, 55.272, 55.678, 54.578, 54.912, 54.32, 54.964, 55.168, 54.698, 54.232, 54.332, 55.582, 55.244, 55.46, 54.044, 54.888, 55.338, 54.244, 54.848, 54.988, 55.074, 55.056, 55.188, 54.478, 54.414, 54.968, 54.244, 54.656, 54.91, 53.66, 54.146, 54.322, 55.104, 55.358, 54.328, 54.314, 54.754, 55.232, 54.368, 54.902, 55.708, 54.99, 54.486, 55.45, 54.5, 53.618, 55.5, 55.294, 54.7, 55.506, 54.638, 54.46, 55.034, 54.022, 55.644, 54.762, 56.056, 54.872, 55.516, 54.03, 54.892, 54.78, 54.824, 54.742, 54.836, 55.606, 54.394, 55.466, 55.094, 55.116, 54.76, 54.132, 54.29, 54.904, 54.726, 54.544, 54.938, 54.696, 54.22, 54.426, 55.116, 55.43, 54.184, 55.16, 55.134, 55.668, 56.076, 55.508, 55.174, 55.554, 54.132, 54.388, 54.67, 55.174, 54.752, 55.256, 55.164, 54.824, 55.31, 55.016, 54.168, 54.366, 54.818, 55.13, 54.258, 54.662, 54.61, 55.206, 54.524, 54.89, 54.966, 55.504, 55.124, 55.058, 55.052, 54.632, 55.396, 54.236, 55.014, 54.83, 55.036, 54.674, 54.452, 55.526, 55.674, 54.592, 54.532, 54.386, 54.55, 55.766, 55.194, 54.176, 54.662, 55.282, 55.842, 55.552, 55.118, 54.958, 54.952, 55.868, 54.986, 54.978, 55.144, 55.636, 54.684, 55.172, 54.084, 54.696, 54.948, 54.764, 54.084, 54.776, 53.776, 54.616, 54.924, 54.79, 55.5, 55.642, 54.468, 54.608, 55.738, 54.494, 54.698, 55.642, 54.612, 55.728, 54.39, 55.656, 55.538, 55.458, 54.844, 54.576, 55.022, 54.672, 54.412, 55.39, 55.888, 55.392, 55.09, 55.42, 54.914, 53.93, 55.202, 54.614, 54.568, 54.604, 54.74, 54.41, 55.256, 54.456, 54.222, 54.158, 54.854, 54.42, 54.934, 55.106, 55.39, 55.632, 55.186, 54.75, 54.73, 55.096, 54.572, 55.77, 55.524, 54.88, 53.526, 55.964, 55.406, 54.77, 54.538, 54.9, 55.366, 55.028, 54.392, 54.818, 55.214, 55.656, 54.864, 55.036, 55.072, 55.704, 54.5, 55.496, 54.298, 54.998, 54.766, 54.194, 54.736, 54.872, 54.758, 54.622, 55.33, 55.104, 54.012, 55.298, 55.076, 53.958, 54.49, 54.236, 54.768, 54.432, 54.682, 55.07, 54.442, 54.646, 55.03, 55.138, 55.186, 54.822, 54.206, 54.47, 54.266, 54.32, 54.588, 55.236, 54.182, 54.788, 55.164, 54.758, 54.698, 55.168, 54.414, 54.83, 55.266, 54.782, 54.746, 55.666, 55.102, 54.878, 54.88, 55.484, 55.054, 54.458, 54.514, 55.056, 54.124, 53.518, 54.782, 54.738, 54.818, 55.388, 55.17, 54.578, 54.806, 54.256, 55.284, 54.946, 53.854, 54.734, 54.748, 54.782, 54.962, 53.758, 54.96, 55.446, 54.262, 55.684, 54.212, 54.72, 54.18, 55.236, 54.716, 54.886, 54.096, 54.79, 55.17, 55.12, 54.836, 53.916, 54.418, 54.14, 54.47, 55.146, 55.76, 54.346, 54.86, 55.378, 54.456, 54.088, 54.788, 54.726, 54.426, 54.9, 55.636, 54.728, 54.972, 55.028, 55.034, 54.984, 55.698, 55.338, 54.728, 54.426, 55.68, 54.71, 54.018, 54.672, 54.976, 55.072, 53.572, 55.232, 54.244, 55.352, 55.004, 55.424, 55.466, 54.778, 54.344, 54.794, 55.182, 54.812, 54.808, 54.508, 53.866, 54.298, 54.976, 55.308, 54.412, 54.496, 55.404, 55.994, 55.282, 55.452, 54.9, 56.114, 55.176, 53.802, 54.804, 55.352, 55.132, 54.33, 55.38, 54.698, 55.36, 54.91, 54.912, 54.698, 54.272, 55.02, 54.574, 55.276, 54.078, 53.93, 54.836, 54.044, 54.396, 54.978, 54.864, 54.344, 55.314, 54.53, 54.544, 55.032, 54.578, 55.532, 55.004, 54.94, 54.924, 54.526, 55.294, 54.648, 54.808, 55.008, 55.654, 54.636, 54.628, 54.594, 54.17, 54.946, 54.942, 54.462, 55.04, 54.69, 54.37, 54.854, 54.898, 54.616, 54.392, 54.758, 55.29, 55.154, 55.518, 54.874, 54.894, 54.886, 54.262, 54.89, 54.986, 54.802, 54.674, 54.73, 54.538, 54.522, 54.35, 54.498, 55.098, 54.338, 55.26, 54.956, 54.984, 55.458, 54.062, 53.892, 53.744, 54.654, 54.472, 55.308, 55.026, 55.462, 55.21, 53.502, 54.388, 55.192, 54.512, 54.308, 54.13, 54.628, 54.938, 55.148, 54.386, 54.746, 55.636, 54.344, 54.436, 54.324, 55.446, 54.614, 54.538, 55.432, 53.886, 55.766, 55.006, 54.656, 54.23, 54.716, 54.474, 54.624, 55.036, 54.934, 54.628, 55.068, 54.718, 54.674, 55.032, 55.282, 54.684, 54.834, 55.506, 54.296, 54.39, 54.914, 55.172, 55.292, 55.88, 55.006, 54.402, 55.732, 55.114, 55.23, 54.21, 54.746, 55.298, 54.766, 55.214, 54.852, 55.76, 55.608, 54.822, 55.154, 54.772, 54.724, 54.744, 55.62, 55.534, 55.964, 55.352, 54.624, 54.852, 55.41, 54.342, 54.918, 54.958, 55.36, 54.802, 54.61, 54.276, 54.744, 54.372, 55.88, 54.824, 54.742, 54.184, 54.648, 55.546, 54.298, 54.844, 54.46, 54.448, 55.582, 55.118, 53.64, 54.998, 55.058, 54.582, 54.304, 54.704, 55.95, 55.034, 54.854, 54.752, 54.016, 55.308, 53.904, 55.012, 54.964, 54.316, 55.208, 54.42, 55.006, 53.924, 55.25, 54.558, 55.416, 54.36, 53.604, 55.054, 54.7, 54.484, 54.502, 54.818, 54.282, 55.144, 55.906, 54.388, 54.46, 55.846, 54.364, 54.92, 54.65, 54.918, 54.596, 53.942, 55.032, 54.45, 55.332, 54.35, 55.298, 54.542, 55.31, 54.828, 54.924, 54.83, 54.596, 54.736, 54.714, 55.074, 55.632, 55.084, 55.676, 54.862, 54.656, 54.204, 54.724, 54.172, 55.446, 54.708, 53.926, 53.776, 54.61, 55.108, 54.768, 54.3, 54.418, 54.342, 54.392, 54.728, 54.002, 53.988, 54.872, 54.932, 54.972, 54.342, 55.358, 55.73, 54.126, 54.328, 55.33, 55.822, 55.218, 54.45, 54.416, 55.348, 55.042, 54.844, 54.918, 53.772, 54.934, 55.064, 55.186, 54.884, 54.578, 55.066, 54.434, 55.294, 55.444, 55.742, 54.066, 54.802, 53.136, 54.376, 55.366, 56.154, 54.714, 55.742, 54.952, 54.78, 54.66, 54.35, 54.78, 54.886, 55.486, 55.73, 54.422, 55.036, 55.11, 54.68, 53.414, 54.78, 54.434, 55.52, 54.016, 55.39, 55.804, 54.144, 55.726, 55.306, 53.894, 54.312, 55.122, 55.086, 56.088, 54.478, 55.184, 55.05, 54.988, 54.666, 54.846, 54.224, 54.188, 55.002, 54.926, 54.638, 54.036, 54.294, 54.524, 54.15, 55.38, 54.078, 54.558, 55.046, 55.498, 54.614, 55.26, 55.074, 54.826, 55.436, 54.266, 55.376, 54.628, 55.586, 54.182, 55.148, 54.942, 54.874, 54.656, 54.964, 54.81, 54.448, 54.972, 54.944, 54.008, 54.478, 54.824, 54.82, 54.688, 54.82, 55.422, 55.26, 54.758, 55.218, 55.442, 55.22, 54.076, 55.06, 55.244, 54.37, 55.738, 54.82, 55.37, 54.24, 54.95, 55.53, 54.758, 54.006, 55.184, 54.426, 55.334, 54.326, 54.956, 55.118, 55.0, 54.672, 54.482, 54.95, 54.736, 55.126, 55.612, 54.852, 54.402, 54.594, 54.218, 55.326, 55.052, 55.432, 54.9, 54.428, 54.322, 54.426, 54.712, 54.85, 54.97, 54.73, 55.326, 54.414, 54.898, 55.13, 55.018, 54.498, 55.052, 55.55, 54.606, 54.226, 54.892, 54.412, 55.0, 54.476, 54.578, 54.872, 54.146, 54.598, 55.648, 54.652, 55.536, 54.966, 55.8, 54.932, 54.864, 54.492, 54.112, 54.826, 54.3, 54.93, 54.582, 55.372, 54.368, 54.398, 55.026, 54.25, 55.052, 54.568, 55.23, 55.292, 54.842, 54.932, 54.8, 55.49, 55.124, 55.222, 54.402, 54.46, 54.83, 55.48, 55.62, 55.208, 54.63, 55.02, 55.238, 54.644, 55.346, 54.62, 54.81, 54.642, 53.934, 55.502, 54.986, 55.418, 55.288, 54.258, 54.594, 54.99, 54.792, 55.472, 54.95, 55.086, 54.32, 55.264, 54.558, 55.574, 55.058, 54.504, 55.072, 54.938, 55.17, 54.312, 54.528, 54.878, 54.664, 54.114, 55.436, 55.412, 54.884, 54.298, 55.148, 54.488, 55.314, 54.244, 55.14, 54.648]
[54.788, 54.698, 55.536, 54.768, 55.348, 54.426, 54.722, 55.488, 54.966, 54.476, 55.644, 55.768, 54.582, 55.936, 56.242, 55.316, 56.14, 55.706, 54.646, 54.652, 55.336, 54.322, 55.568, 55.252, 54.702, 55.068, 56.03, 55.068, 55.068, 54.704, 54.482, 55.25, 55.186, 55.35, 55.456, 55.226, 55.706, 55.362, 54.502, 55.114, 55.736, 55.366, 55.346, 55.684, 55.132, 55.422, 55.176, 55.184, 55.36, 55.124, 55.548, 55.31, 55.768, 54.656, 55.696, 55.146, 55.19, 54.668, 54.998, 55.332, 55.844, 54.904, 54.712, 55.556, 54.792, 54.808, 55.848, 54.73, 54.814, 54.866, 54.504, 55.926, 54.376, 55.636, 55.796, 55.44, 55.872, 55.32, 56.168, 55.006, 54.266, 54.446, 55.874, 55.458, 55.82, 55.602, 54.936, 55.412, 55.638, 53.91, 55.368, 54.76, 55.108, 55.386, 54.914, 54.658, 54.358, 55.322, 55.908, 54.876, 55.628, 53.934, 55.096, 55.658, 54.468, 54.796, 55.612, 55.606, 55.942, 55.08, 54.798, 55.134, 54.536, 55.558, 55.294, 55.086, 54.804, 54.316, 55.66, 55.432, 54.816, 54.822, 55.982, 55.0, 55.344, 56.128, 55.198, 54.904, 54.968, 55.28, 55.05, 55.446, 54.222, 55.656, 56.4, 56.04, 54.91, 54.754, 55.754, 54.882, 55.144, 55.734, 54.944, 55.462, 54.296, 55.736, 55.174, 54.916, 55.566, 55.272, 55.59, 55.556, 55.852, 55.572, 55.104, 54.876, 55.53, 54.772, 54.034, 54.836, 54.942, 55.578, 54.8, 55.158, 54.902, 54.662, 54.812, 55.422, 55.446, 54.76, 55.25, 54.488, 54.634, 55.752, 54.366, 54.558, 54.99, 54.99, 55.98, 54.518, 55.506, 55.208, 55.072, 54.674, 55.108, 55.06, 54.874, 55.472, 54.606, 55.066, 56.056, 55.116, 55.496, 55.494, 55.174, 54.882, 55.218, 55.036, 54.936, 55.346, 55.46, 55.494, 54.932, 55.086, 54.914, 54.18, 56.068, 55.836, 54.954, 55.512, 55.612, 54.582, 55.87, 55.018, 54.904, 55.986, 55.112, 55.09, 54.39, 55.368, 55.524, 54.682, 55.066, 55.036, 54.696, 55.198, 55.122, 54.942, 55.71, 54.86, 54.758, 54.664, 55.908, 55.252, 54.966, 54.776, 54.674, 54.596, 54.628, 54.776, 55.296, 55.224, 54.764, 55.134, 54.536, 55.014, 55.206, 54.352, 55.39, 54.898, 55.524, 55.322, 53.758, 55.464, 55.166, 55.38, 55.334, 54.27, 54.558, 54.844, 54.858, 55.36, 54.384, 54.996, 55.414, 56.074, 55.524, 55.13, 55.194, 55.36, 55.702, 55.118, 55.7, 55.924, 54.954, 54.872, 54.948, 54.228, 54.914, 55.124, 55.076, 55.06, 55.96, 55.146, 55.214, 55.036, 55.494, 55.22, 54.888, 55.374, 55.148, 54.728, 54.84, 55.228, 55.484, 55.69, 54.964, 55.136, 54.542, 55.798, 54.926, 55.008, 54.574, 54.822, 55.024, 55.198, 55.402, 55.114, 54.676, 55.068, 53.922, 55.072, 54.94, 54.98, 55.05, 54.528, 55.946, 55.814, 55.24, 54.448, 55.174, 54.29, 55.822, 56.156, 55.616, 55.03, 56.108, 54.822, 54.846, 55.886, 55.748, 54.232, 54.806, 55.516, 55.63, 54.202, 55.678, 55.13, 55.788, 54.536, 55.362, 54.782, 55.06, 54.894, 55.062, 55.042, 55.538, 55.638, 55.734, 55.5, 55.378, 54.878, 55.112, 55.29, 54.116, 54.516, 54.86, 54.582, 54.998, 54.788, 55.614, 54.696, 54.838, 55.104, 55.148, 55.352, 55.33, 55.744, 54.664, 55.448, 55.564, 56.06, 54.776, 56.524, 54.778, 54.544, 54.61, 55.108, 54.536, 54.65, 55.11, 55.47, 54.972, 55.59, 55.684, 55.648, 55.626, 55.572, 55.57, 54.95, 55.524, 55.158, 54.076, 55.196, 55.416, 55.218, 55.482, 55.002, 55.142, 55.286, 54.826, 55.824, 55.646, 54.446, 54.844, 54.73, 54.062, 55.616, 53.99, 55.27, 54.576, 55.346, 56.316, 54.598, 55.048, 54.718, 56.424, 54.966, 55.914, 54.482, 55.734, 55.544, 54.972, 54.89, 55.424, 54.874, 55.17, 54.884, 54.778, 55.162, 55.152, 55.46, 54.028, 55.218, 54.86, 55.918, 55.26, 55.29, 55.426, 54.802, 55.5, 54.472, 55.646, 55.168, 54.398, 55.29, 54.86, 54.974, 54.294, 54.67, 54.05, 55.29, 55.28, 54.944, 55.118, 55.372, 55.21, 55.332, 55.036, 55.082, 55.252, 54.352, 54.512, 54.624, 55.92, 55.284, 54.63, 55.556, 55.582, 54.92, 56.032, 55.242, 55.018, 55.228, 55.16, 55.122, 55.404, 54.886, 55.646, 54.922, 54.942, 55.948, 55.854, 54.878, 54.322, 55.152, 56.174, 54.95, 54.568, 55.386, 55.096, 55.488, 55.04, 55.978, 55.502, 55.474, 55.254, 54.796, 55.624, 55.122, 55.16, 55.388, 55.134, 54.376, 55.214, 55.238, 55.198, 55.382, 55.3, 54.716, 55.712, 54.86, 54.646, 54.54, 55.212, 55.53, 54.782, 55.678, 54.96, 54.842, 54.87, 55.614, 55.664, 55.204, 55.084, 54.918, 55.606, 54.648, 55.48, 55.196, 55.722, 55.438, 55.47, 54.782, 54.644, 55.176, 54.57, 55.496, 54.996, 55.476, 55.838, 54.154, 55.254, 55.028, 54.878, 54.716, 55.218, 55.042, 54.998, 55.932, 55.242, 54.932, 54.324, 55.152, 55.888, 55.882, 55.756, 54.386, 55.298, 55.398, 54.288, 54.97, 55.614, 55.442, 56.036, 55.348, 54.798, 54.914, 55.124, 55.068, 54.946, 54.738, 54.648, 54.218, 55.53, 54.714, 54.896, 54.682, 55.63, 55.176, 55.13, 55.13, 54.712, 55.218, 55.818, 55.052, 55.752, 55.9, 55.558, 55.556, 55.242, 54.876, 54.95, 55.47, 55.236, 55.592, 53.964, 55.04, 54.792, 54.314, 54.962, 55.08, 53.742, 53.954, 54.916, 55.404, 55.006, 54.868, 55.606, 55.016, 55.144, 55.874, 54.97, 54.738, 55.014, 54.65, 55.228, 54.946, 54.41, 55.06, 55.08, 54.594, 55.644, 55.556, 55.012, 54.462, 55.072, 55.956, 54.906, 54.598, 54.568, 54.31, 55.226, 55.038, 55.2, 55.626, 55.904, 55.18, 55.538, 54.02, 54.872, 55.328, 55.478, 55.214, 54.52, 54.998, 55.302, 54.702, 55.284, 54.362, 54.52, 54.012, 55.03, 54.752, 55.098, 55.056, 55.434, 55.022, 55.36, 55.624, 55.876, 55.31, 54.914, 54.36, 55.84, 56.144, 54.676, 54.238, 54.356, 55.132, 55.234, 55.528, 54.642, 54.706, 54.43, 54.708, 55.348, 55.44, 55.008, 54.846, 54.592, 55.02, 55.128, 54.82, 55.714, 55.53, 54.784, 54.318, 54.734, 55.308, 54.874, 54.788, 54.86, 54.802, 55.096, 54.338, 54.644, 54.476, 55.774, 55.07, 54.862, 54.814, 55.088, 55.41, 55.096, 55.214, 54.672, 54.64, 55.58, 54.648, 54.954, 54.888, 55.872, 54.57, 53.866, 55.63, 54.458, 55.318, 55.668, 54.81, 55.082, 55.036, 55.65, 54.554, 54.806, 55.23, 55.176, 54.982, 55.156, 54.568, 55.116, 56.108, 55.53, 55.464, 55.57, 55.092, 54.908, 55.084, 54.718, 55.58, 54.206, 55.372, 55.428, 54.788, 55.15, 53.642, 55.6, 56.064, 55.094, 55.436, 55.65, 55.558, 55.388, 54.992, 55.52, 55.508, 54.69, 55.098, 55.602, 54.914, 54.118, 54.784, 54.82, 55.762, 55.148, 54.204, 54.888, 55.14, 55.578, 55.258, 55.164, 55.06, 55.254, 55.438, 55.814, 54.408, 54.106, 54.864, 55.372, 55.108, 55.006, 55.316, 55.528, 55.422, 55.484, 55.424, 54.848, 55.018, 54.784, 55.278, 56.256, 55.056, 55.312, 54.676, 55.794, 55.61, 55.204, 55.398, 54.972, 55.14, 55.174, 54.87, 55.252, 55.184, 54.982, 55.462, 54.918, 55.082, 55.542, 54.936, 55.068, 55.136, 55.236, 55.618, 54.336, 55.246, 54.588, 55.154, 54.944, 54.212, 55.804, 54.906, 56.054, 56.114, 54.732, 55.566, 55.124, 55.46, 54.516, 54.522, 55.278, 54.938, 54.898, 54.624, 55.676, 54.914, 55.982, 55.516, 54.182, 55.942, 56.508, 55.164, 55.02, 55.672, 55.212, 55.234, 55.228, 55.462, 54.422, 55.13, 55.748, 53.942, 55.766, 54.46, 54.81, 55.266, 54.966, 55.528, 54.692, 54.02, 54.97, 55.07, 54.642, 55.808, 55.19, 55.026, 55.234, 54.77, 55.186, 54.532, 54.24, 55.604, 54.446, 55.41, 55.442, 55.472, 54.418, 54.502, 55.42, 55.788, 54.59, 55.244, 56.558, 54.888, 55.384, 55.234, 55.062, 55.004, 55.768, 55.01, 55.32, 54.63, 54.93, 54.948, 55.392, 54.382, 54.78, 55.916, 55.118, 54.786, 55.526, 54.742, 55.154, 54.788, 55.188, 55.092, 55.328, 54.454, 54.802, 54.872, 55.232, 55.58, 55.382, 54.648, 55.262, 54.72, 54.888, 55.064, 54.856, 54.528, 55.342, 55.512, 55.014, 55.186, 55.72, 55.016, 55.822, 54.404, 56.118, 54.746, 56.288, 54.954, 55.756, 56.084, 54.612, 55.008, 54.874, 55.098, 55.152, 55.536, 56.148, 55.65, 55.026, 55.548, 55.264, 55.274, 55.254, 55.656, 55.3, 54.774, 56.062, 54.832, 54.68, 55.82, 55.414, 54.836, 55.042, 54.536, 54.832, 55.06, 54.224, 54.948, 54.63, 54.924, 55.844, 54.508, 55.64, 55.242, 55.946, 55.624, 55.664, 55.296, 55.416, 55.492, 55.314, 56.412, 54.91, 55.328, 55.084, 54.442, 55.408, 55.842, 55.216, 55.002, 55.406, 56.114, 54.914, 54.89, 54.312, 55.014, 55.814, 55.59, 54.926, 55.634, 55.774, 55.666, 54.86, 55.564, 55.19, 54.9, 54.962, 55.81, 54.834, 55.316, 54.246, 55.014, 54.916, 55.038, 55.154, 55.648, 54.698, 55.372, 55.694, 54.948, 54.71, 54.986, 54.916, 54.222, 55.026, 54.922, 54.77, 54.588, 55.272, 55.378, 54.676, 54.95, 55.642, 55.834, 54.178, 54.752, 54.888, 55.594, 56.12, 54.972, 55.392, 55.934, 54.32, 55.284, 56.046, 55.69, 55.318, 55.198, 55.266, 55.906, 55.374, 54.974, 54.72, 54.954, 55.284, 55.35, 55.75, 55.594, 55.32, 55.748, 55.216, 54.96, 55.206, 56.006, 55.932, 54.73, 54.922, 54.976, 54.808, 55.162, 55.366, 56.024, 54.462, 55.012, 54.322, 55.836, 54.934, 55.942, 55.122, 55.12, 54.544, 55.29, 54.66, 56.166, 55.288, 56.186, 55.334, 54.404, 55.358, 55.048, 54.888, 54.774, 55.27, 55.082, 54.888, 55.478, 54.708, 55.588, 55.594, 55.33, 54.076, 55.076, 54.424, 56.036, 54.33, 55.316, 55.54, 55.074, 54.978, 55.518, 55.032, 54.388, 55.078, 54.414, 55.786, 54.586, 54.472, 54.64, 54.682, 55.406, 55.07, 54.228, 55.46, 55.248, 54.986, 54.984, 55.044, 54.62, 55.276, 54.978, 54.446, 54.952, 54.596, 54.864, 55.072, 55.568, 55.95, 55.978, 55.242, 54.86, 55.76, 54.74, 54.342, 55.744, 55.176, 55.17, 54.46, 55.228, 54.892, 55.024, 55.046, 55.048, 54.804, 55.086, 54.754, 55.97, 55.852, 53.946, 55.824, 54.868, 55.392, 55.318, 55.522, 55.722, 55.266, 55.128, 54.454, 55.586, 55.886, 55.524, 55.534, 54.826, 54.998, 54.148, 56.48, 55.534, 55.698, 55.148, 55.052, 54.682, 54.92, 54.598, 54.952, 54.164, 54.552, 55.338, 55.372, 55.322, 56.316, 54.526, 54.698, 54.632, 54.882, 55.136, 55.336, 54.074, 55.37, 54.9, 54.886, 54.594, 53.946, 54.57, 55.322, 55.098, 55.064, 55.712, 54.64, 55.062, 55.084, 54.324, 55.64, 55.394, 54.956, 54.206, 55.292, 54.546, 54.14, 55.228, 55.368, 54.854, 55.048, 54.91, 55.59, 56.43, 56.222, 55.392, 55.678, 54.964, 54.824, 54.704, 54.964, 56.154, 56.034, 55.242, 55.052, 55.266, 54.63, 54.724, 54.962, 54.544, 55.26, 55.098, 55.98, 54.668, 54.934, 55.294, 54.82, 55.382, 55.014, 55.48, 56.116, 54.834, 54.74, 54.968, 54.38, 54.83, 54.934, 55.752, 56.248, 55.602, 55.138, 54.166, 54.688, 54.898, 55.17, 54.75, 55.512, 55.01, 54.59, 55.0, 54.216, 54.39, 54.7, 55.082, 55.376, 55.06, 55.36, 54.702, 55.428, 55.904, 55.19, 55.14, 55.37, 54.838, 55.71, 54.56, 55.238, 55.216, 54.716, 54.74, 55.218, 55.208, 55.646, 55.028, 54.976, 55.762, 56.182, 55.59, 55.478, 54.954, 55.3, 55.05, 54.934, 55.504, 55.24, 54.838, 55.262, 55.434, 55.648, 55.034, 54.576, 55.458, 55.142, 55.412, 54.808, 54.528, 54.892, 55.236, 55.136, 55.306, 55.29, 55.542, 55.464, 55.078, 55.35, 55.152, 54.63, 55.046, 54.902, 55.18, 54.928, 54.634, 54.052, 55.104, 54.924, 54.588, 54.696, 55.668, 54.698, 55.096, 54.736, 54.844, 54.536, 55.836, 55.706, 54.694, 54.136, 54.53, 54.992, 55.818, 55.554, 55.126, 55.34, 54.92, 55.148, 55.02, 55.43, 55.084, 55.144, 55.454, 54.894, 54.672, 54.736, 55.416, 55.75, 54.368, 55.096, 54.962, 55.502, 55.046, 54.64, 55.18, 55.78, 55.982, 55.696, 55.386, 53.976, 54.598, 56.004, 55.456, 54.686, 55.052, 55.18, 55.486, 54.806, 54.782, 55.682, 55.32, 55.01, 55.23, 55.272, 55.136, 54.818, 55.588, 55.304, 55.104, 55.196, 53.916, 55.362, 55.386, 54.244, 54.386, 54.712, 55.398, 55.112, 55.288, 54.676, 54.974, 54.65, 55.474, 54.924, 55.574, 54.914, 55.27, 54.93, 54.374, 55.024, 55.174, 55.252, 55.414, 55.078, 54.284, 55.172, 54.434, 55.658, 55.742, 54.214, 54.72, 55.082, 55.526, 55.116, 54.226, 54.948, 54.7, 54.914, 55.942, 54.99, 55.258, 54.202, 55.544, 55.4, 55.288, 55.538, 55.298, 54.844, 54.66, 55.288, 55.628, 55.366, 54.8, 55.63, 55.216, 55.2, 55.066, 54.836, 54.334, 56.066, 55.96, 54.836, 55.156, 55.428, 55.04, 54.608, 55.148, 54.264, 54.466, 55.214, 55.318, 55.404, 54.618, 55.26, 55.536, 55.304, 54.192, 54.922, 55.384, 55.778, 55.426, 55.132, 54.252, 54.788, 55.36, 55.32, 54.596, 54.96, 55.428, 55.246, 55.438, 54.9, 55.236, 54.79, 55.55, 54.852, 55.258, 54.874, 54.978, 54.93, 55.604, 54.934, 55.722, 55.494, 55.16, 55.078, 55.046, 55.354, 55.698, 56.1, 55.422, 54.442, 55.14, 55.202, 55.664, 55.018, 54.404, 55.198, 54.93, 54.258, 54.596, 55.294, 54.29, 55.012, 55.216, 55.386, 55.352, 54.922, 54.782, 54.878, 54.896, 56.26, 55.348, 54.792, 55.214, 55.324, 55.188, 55.604, 55.32, 55.498, 56.046, 54.72, 54.862, 55.988, 54.532, 54.724, 54.236, 55.678, 55.18, 54.898, 54.394, 55.18, 55.628, 55.216, 55.494, 55.434, 54.596, 55.21, 54.91, 55.164, 55.178, 54.914, 55.718, 55.234, 55.784, 55.112, 55.774, 55.882, 54.696, 54.518, 54.78, 54.564, 55.792, 55.552, 55.112, 54.702, 55.004, 54.452, 55.206, 54.568, 55.19, 55.592, 54.056, 55.622, 54.454, 55.348, 55.536, 54.958, 55.258, 55.05, 55.8, 55.87, 55.38, 53.91, 54.342, 54.282, 53.74, 54.68, 55.848, 55.372, 55.528, 56.062, 55.57, 55.136, 54.734, 55.002, 54.874, 54.658, 54.972, 55.462, 54.848, 55.15, 55.752, 55.046, 55.266, 55.628, 54.636, 54.842, 54.208, 54.752, 55.42, 56.206, 54.858, 55.14, 55.384, 55.324, 55.242, 54.924, 54.768, 55.404, 55.544, 55.498, 55.376, 56.268, 55.766, 56.204, 54.998, 55.416, 54.992, 54.972, 55.092, 55.828, 55.552, 56.038, 55.388, 55.074, 55.508, 55.216, 55.248, 55.352, 54.928, 54.548, 55.19, 55.866, 55.672, 55.38, 55.156, 55.738, 55.378, 54.9, 54.822, 54.756, 56.162, 54.39, 55.25, 55.398, 55.95, 54.276, 55.192, 55.504, 54.626, 54.702, 54.684, 54.516, 55.398, 54.674, 54.91, 54.358, 55.178, 55.04, 55.228, 54.678, 55.27, 55.006, 55.024, 54.92, 54.55, 55.088, 55.13, 55.278, 54.934, 55.284, 55.138, 55.216, 54.08, 54.56, 55.248, 55.582, 55.03, 55.222, 55.818, 55.902, 54.97, 55.304, 55.804, 54.956, 55.188, 55.276, 55.6, 55.672, 55.176, 54.754, 55.916, 55.044, 56.274, 55.652, 55.582, 53.918, 54.686, 55.262, 54.888, 55.152, 54.048, 55.056, 55.498, 54.916, 54.438, 54.404, 55.392, 53.966, 55.31, 54.316, 55.584, 55.314, 54.498, 55.598, 55.228, 55.56, 55.976, 54.694, 54.128, 55.7, 54.664, 55.11, 55.44, 54.51, 54.654, 55.64, 55.028, 55.016, 55.006, 54.22, 55.62, 55.432, 56.066, 55.662, 54.998, 55.888, 54.834, 55.52, 56.45, 55.642, 55.67, 54.74, 55.132, 54.784, 54.592, 55.46, 55.14, 55.65, 55.574, 54.498, 54.804, 55.58, 55.44, 55.11, 55.45, 53.914, 54.554, 54.638, 54.928, 54.824, 54.974, 55.13, 55.498, 55.088, 54.604, 54.33, 56.034, 55.416, 55.824, 55.166, 54.936, 55.194, 55.332, 54.424, 55.05, 54.558, 54.668, 55.822, 54.886, 54.56, 55.212, 56.7, 55.756, 55.22, 55.338, 55.054, 55.356, 54.956, 55.276, 55.318, 55.338, 54.568, 55.148, 55.548, 55.34, 55.618, 54.418, 55.192, 56.212, 55.548, 54.88, 55.44, 55.058, 54.794, 54.896, 54.78, 55.108, 54.858, 54.61, 55.81, 54.47, 55.14, 56.318, 55.294, 54.732, 55.744, 55.46, 55.108, 55.344, 55.882, 55.51, 55.534, 54.992, 54.67, 54.432, 53.552, 55.28, 54.41, 55.604, 55.016, 55.002, 55.208, 54.908, 55.782, 54.356, 55.086, 55.112, 54.88, 55.134, 55.666, 55.396, 55.004, 55.492, 54.768, 55.196, 55.176, 55.258, 55.17, 55.27, 54.436, 54.662, 54.486, 55.434, 54.832, 55.124, 55.258, 54.508, 54.236, 55.072, 54.41, 54.44, 55.33, 55.476, 55.716, 54.946, 54.828, 54.778, 55.83, 54.934, 55.46, 54.74, 55.596, 55.524, 56.41, 55.09, 55.986, 55.912, 55.294, 55.146, 55.164, 56.166, 54.756, 55.33, 55.932, 55.512, 55.552, 54.658, 55.434, 54.66, 55.11, 54.618, 55.558, 55.238, 55.232, 55.436, 55.158, 55.028, 54.82, 55.484, 55.096, 55.038, 54.656, 55.348, 54.876, 55.2, 55.334, 55.02, 55.552, 55.448, 54.484, 54.446, 54.818, 55.23, 55.358, 54.238, 55.86, 54.408, 55.176, 55.934, 55.194, 54.908, 54.632, 54.518, 54.618, 55.04, 54.742, 55.008, 54.356, 55.266, 55.562, 55.432, 54.966, 55.544, 54.816, 54.818, 55.518, 55.004, 54.416, 56.02, 54.92, 55.026, 55.028, 54.538, 55.57, 56.056, 55.51, 55.104, 54.71, 54.644, 55.854, 54.74, 55.286, 54.196, 55.686, 55.442, 55.884, 55.39, 55.906, 54.958, 55.808, 54.37, 55.206, 55.004, 54.764, 54.96, 56.334, 55.478, 55.154, 54.93, 55.388, 54.95, 55.352, 56.0, 54.824, 54.098, 55.542, 55.526, 55.76, 54.844, 55.41, 54.674, 54.596, 55.566, 55.09, 55.556, 54.868, 54.134]

Note

The sampling distribution and bootstrap distribution are closely related, and so is the code to
generate them.

0.4.5 Exercise 4.2.2

Compare sampling and bootstrap means

To make calculation easier, distributions similar to those calculated from the previous exercise
have been included, this time using a sample size of 5000.

spotify_population, spotify_sample, sampling_distribution, and bootstrap_distribution are
available; pandas and numpy are loaded with their usual aliases.

Instructions

1. Calculate the mean popularity in 4 ways:

• Population: from spotify, take the mean of popularity.
• Sample: from spotify_sample, take the mean of popularity.
• Sampling distribution: from sampling_distribution, take its mean.
• Bootstrap distribution: from ‘bootstrap_distribution, take its mean.

78

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Importing the course array
spotify = pd.read_feather("datasets/spotify_2000_2020.feather")

spotify_sample = spotify.sample(n=500)

mean_popularity_2000_samp = []

Generate a sampling distribution of 2000 replicates
for i in range(2000):

mean_popularity_2000_samp.append(
Sample 500 rows and calculate the mean popularity
spotify.sample(n=500)['popularity'].mean()

)

The sampling distribution results
sampling_distribution = mean_popularity_2000_samp

mean_popularity_2000_boot = []

Generate a bootstrap distribution of 2000 replicates
for i in range(2000):

mean_popularity_2000_boot.append(
Resample 500 rows and calculate the mean popularity
np.mean(spotify_sample.sample(frac=1, replace=True)['popularity'])

)

The bootstrap distribution results
bootstrap_distribution = mean_popularity_2000_boot

Calculate the population mean popularity
pop_mean = spotify['popularity'].mean()

Calculate the original sample mean popularity
samp_mean = spotify_sample['popularity'].mean()

Calculate the sampling dist'n estimate of mean popularity
samp_distn_mean = np.mean(sampling_distribution)

Calculate the bootstrap dist'n estimate of mean popularity

79

boot_distn_mean = np.mean(bootstrap_distribution)

Print the means
print([pop_mean, samp_mean, samp_distn_mean, boot_distn_mean])

[54.837142308430955, 55.512, 54.84017, 55.506617]

Note

The sampling distribution mean can be used to estimate the population mean, but that is not
the case with the bootstrap distribution.

0.4.6 Exercise 4.2.3

Compare sampling and bootstrap standard deviations

In the same way that you looked at how the sampling distribution and bootstrap distribution
could be used to estimate the population mean, you’ll now take a look at how they can be used
to estimate variation, or more specifically, the standard deviation, in the population.

Recall that the sample size is 5000.

Instructions

Calculate the standard deviation of popularity in 4 ways. - Population: from spotify, take the
standard deviation of popularity. - Original sample: from spotify_sample, take the standard
deviation of popularity. - Sampling distribution: from sampling_distribution, take its stan-
dard deviation and multiply by the square root of the sample size (5000). - Bootstrap distribution:
from bootstrap_distribution, take its standard deviation and multiply by the square root of
the sample size.

Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random

Importing the course array
spotify = pd.read_feather("datasets/spotify_2000_2020.feather")

spotify_sample = spotify.sample(n=5000, random_state=2022)

mean_popularity_2000_samp = []

80

Generate a sampling distribution of 2000 replicates
for i in range(2000):

mean_popularity_2000_samp.append(
Sample 500 rows and calculate the mean popularity
spotify.sample(n=5000)['popularity'].mean()

)

The sampling distribution results
sampling_distribution = mean_popularity_2000_samp

mean_popularity_2000_boot = []

Generate a bootstrap distribution of 2000 replicates
for i in range(2000):

mean_popularity_2000_boot.append(
Resample 500 rows and calculate the mean popularity
np.mean(spotify_sample.sample(frac=1, replace=True)['popularity'])

)

The bootstrap distribution results
bootstrap_distribution = mean_popularity_2000_boot

Calculate the population std dev popularity
pop_sd = spotify['popularity'].std(ddof=0)

Calculate the original sample std dev popularity
samp_sd = spotify_sample['popularity'].std(ddof=1)

Calculate the sampling dist'n estimate of std dev popularity
samp_distn_sd = np.std(sampling_distribution, ddof=1) * np.sqrt(5000)

Calculate the bootstrap dist'n estimate of std dev popularity
boot_distn_sd = np.std(bootstrap_distribution, ddof=1) * np.sqrt(5000)

Print the standard deviations
print([pop_sd, samp_sd, samp_distn_sd, boot_distn_sd])

[10.880065274257536, 10.975581356685552, 10.118155913776867, 11.119889427921246]

0.4.7 Chapter 4.3: Confidence intervals

In the last few exercises, you looked at relationships between the sampling distribution and the
bootstrap distribution.

81

One way to quantify these distributions is the idea of “values within one standard deviation of
the mean”, which gives a good sense of where most of the values in a distribution lie. In this
final lesson, we’ll formalize the idea of values close to a statistic by defining the term “confidence
interval”.

Predicting the weather

Consider meteorologists predicting weather in one of the world’s most unpredictable regions - the
northern Great Plains of the US and Canada. Rapid City, South Dakota was ranked as the least
predictable of the 120 US cities with a National Weather Service forecast office. Suppose we’ve
taken a job as a meteorologist at a news station in Rapid City. Our job is to predict tomorrow’s
high temperature.

Our weather prediction

We analyze the weather data using the best forecasting tools available to us and predict a high
temperature of 47 degrees Fahrenheit. In this case, 47 degrees is our point estimate. Since the
weather is variable, and many South Dakotans will plan their day tomorrow based on our forecast,
we’d instead like to present a range of plausible values for the high temperature. On our weather
show, we report that the high temperature will be between forty and fifty-four degrees tomorrow.

We just reported a confidence interval!

This prediction of forty to fifty-four degrees can be thought of as a confidence interval for the
unknown quantity of tomorrow’s high temperature. Although we can’t be sure of the exact tem-
perature, we are confident that it will be in that range. These results are often written as the point
estimate followed by the confidence interval’s lower and upper bounds in parentheses or square
brackets. When the confidence interval is symmetric around the point estimate, we can represent
it as the point estimate plus or minus the margin of error, in this case, seven degrees.

Bootstrap distribution of mean flavor

Here’s the bootstrap distribution of the mean flavor from the coffee dataset.

Mean of the resamples

We can calculate the mean of these resampled mean flavors.

Mean plus or minus one standard deviation

If we create a confidence interval by adding and subtracting one standard deviation from the
mean, we see that there are lots of values in the bootstrap distribution outside of this one standard
deviation confidence interval.

82

Quantile method for confidence intervals

If we want to include ninety-five percent of the values in the confidence interval, we can use quan-
tiles. Recall that quantiles split distributions into sections containing a particular proportion of
the total data. To get the middle ninety-five percent of values, we go from the point-zero-two-five
quantile to the point-nine-seven-five quantile since the difference between those two numbers is
point-nine-five. To calculate the lower and upper bounds for this confidence interval, we call quan-
tile from NumPy, passing the distribution values and the quantile values to use. The confidence
interval is from around seven-point-four-eight to seven-point-five-four.

Inverse cumulative distribution function

There is a second method to calculate confidence intervals. To understand it, we need to be familiar
with the normal distribution’s inverse cumulative distribution function. The bell curve we’ve seen
before is the probability density function or PDF. Using calculus, if we integrate this, we get the
cumulative distribution function or CDF. If we flip the x and y axes, we get the inverse CDF. We
can use scipy.stats and call norm.ppf to get the inverse CDF. It takes a quantile between zero
and one and returns the values of the normal distribution for that quantile. The parameters of
loc and scale are set to 0 and 1 by default, corresponding to the standard normal distribution.
Notice that the values corresponding to point-zero-two-five and point-nine-seven-five are about
minus and plus two for the standard normal distribution.

Standard error method for confidence interval

This second method for calculating a confidence interval is called the standard error method. First,
we calculate the point estimate, which is the mean of the bootstrap distribution, and the standard
error, which is estimated by the standard deviation of the bootstrap distribution. Then we call
norm.ppf to get the inverse CDF of the normal distribution with the same mean and standard
deviation as the bootstrap distribution. Again, the confidence interval is from seven-point-four-
eight to seven-point-five-four, though the numbers differ slightly from last time since our bootstrap
distribution isn’t perfectly normal.

0.4.8 Exercise 4.3.1

0.4.8.1 Calculating confidence intervals

You have learned about two methods for calculating confidence intervals: the quantile method
and the standard error method. The standard error method involves using the inverse cumulative
distribution function (inverse CDF) of the normal distribution to calculate confidence intervals.
In this exercise, you’ll perform these two methods on the Spotify data.

83

0.4.8.2 Instructions

1. Generate a 95% confidence interval using the quantile method on the bootstrap distribution,
setting the 0.025 quantile as lower_quant and the 0.975 quantile as upper_quant.

2. Generate a 95% confidence interval using the standard error method from the bootstrap
distribution.

• Calculate point_estimate as the mean of bootstrap_distribution, and standard_error
as the standard deviation of bootstrap_distribution.

• Calculate lower_se as the 0.025 quantile of an inv. CDF from a normal distribution with
mean point_estimate and standard deviation standard_error.

• Calculate upper_se as the 0.975 quantile of that same inv. CDF.

Importing libraries
import pandas as pd
import numpy as np
from scipy.stats import norm

Importing the course array
spotify = pd.read_feather("datasets/spotify_2000_2020.feather")

spotify_sample = spotify.sample(n=5000, random_state=2022)

mean_popularity_2000_boot = []

Generate a bootstrap distribution of 2000 replicates
for i in range(2000):

mean_popularity_2000_boot.append(
Resample 500 rows and calculate the mean popularity
np.mean(spotify_sample.sample(frac=1, replace=True)['popularity'])

)

The bootstrap distribution results
bootstrap_distribution = mean_popularity_2000_boot

Generate a 95% confidence interval using the quantile method
lower_quant = np.quantile(bootstrap_distribution, 0.025)
upper_quant = np.quantile(bootstrap_distribution, 0.975)

Print quantile method confidence interval
print((lower_quant, upper_quant))

Find the mean and std dev of the bootstrap distribution
point_estimate = np.mean(bootstrap_distribution)
standard_error = np.std(bootstrap_distribution, ddof=1)

84

Find the lower limit of the confidence interval
lower_se = norm.ppf(0.025, loc=point_estimate, scale=standard_error)

Find the upper limit of the confidence interval
upper_se = norm.ppf(0.975, loc=point_estimate, scale=standard_error)

Print standard error method confidence interval
print((lower_se, upper_se))

(54.47479, 55.08541)
(54.471152438068415, 55.07709576193159)

0.5 Reference

Sampling in Python in Intermediate Python Course for Associate Data Scientist in Python Carrer
Track in DataCamp Inc by James Chapman.

85

	Chapter 1: Introduction to Sampling
	Chapter 1.1: Sampling and point estimates
	Exercise 1.1.1
	Exercise 1.1.2
	Chapter 1.2: Convenience sampling
	Exercise 1.2.1
	Question
	Exercise 1.2.2
	Question
	Chapter 1.3: Pseudo-random number generation
	Exercise 1.3.1
	Exercise 1.3.2

	CHAPTER 2: Sampling Methods
	Chapter 2.1: Simple random and systematic sampling
	Exercise 2.1.1
	Exercise 2.1.2
	Exercise 2.1.3
	Chapter 2.2: Stratified and weighted random sampling
	Exercise 2.2.2
	Exercise 2.2.3
	Chapter 2.3: Cluster sampling
	Exercise 2.3.1
	Chapter 2.4: Comparing sampling methods
	Exercise 2.4.1
	Exercise 2.4.4

	CHAPTER 3: Sampling Distributions
	Chapter 3.1: Relative error of point estimates
	Exercise 3.1.1
	Chapter 3.2: Creating a sampling distribution
	Exercise 3.2.1
	Chapter 3.3: Approximate sampling distributions
	Exercise 3.3.1
	Exercise 3.3.2
	Chapter 3.4: Standard errors and the Central Limit Theorem
	Exercise 3.4.1
	Exercise 3.4.2

	CHAPTER 4: Bootstrap Distributions
	Chapter 4.1: Introduction to bootstrapping
	Exercise 4.1.1
	Chapter 4.2: Comparing sampling and bootstrap distributions
	Exercise 4.2.1
	Exercise 4.2.2
	Exercise 4.2.3
	Chapter 4.3: Confidence intervals
	Exercise 4.3.1

	Reference

